Experimental Study on Triaxial Shear Properties of Straw Fiber Reinforced Loess

ZHANG Wan, DING Jiu-long, LI Bo, CHEN Ze-yi, XUE Yi-feng, ZHAO Wei

Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (1) : 136-142.

PDF(5487 KB)
PDF(5487 KB)
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (1) : 136-142. DOI: 10.11988/ckyyb.20230084
Rock-Soil Engineering

Experimental Study on Triaxial Shear Properties of Straw Fiber Reinforced Loess

  • ZHANG Wan1, DING Jiu-long1, LI Bo1, CHEN Ze-yi1, XUE Yi-feng2, ZHAO Wei2
Author information +
History +

Abstract

To investigate the shear mechanical properties of straw fiber reinforced loess, we conducted triaxial shear tests and scanning electron microscopy tests. These tests aimed to examine the influence of fiber content, fiber length, and soil moisture content on the shear-strain characteristics and shear strength of the reinforced loess, as well as the reinforcing mechanism. The results of the tests demonstrate that the addition of straw fibers significantly enhances the shear strength of loess by increasing soil cohesion. Importantly, the admixture of straw fibers does not alter the type and characteristics of the deviatoric stress-strain curve of loess, which remains strain-hardening in nature. Through further analysis, we determined that the optimal values for fiber content and length are 0.3% and 10 mm, respectively. Beyond these optimal values, an excessive number of weak interfaces within the soil mass would weaken the integrity of the reinforced loess. Consequently, the bond and friction between the fibers and soil decrease, leading to a decline in the shear strength of the reinforced loess. Additionally, we found that the best moisture content for reinforced loess coincides with the optimal moisture content of pure loess. However, if the moisture content of reinforced loess exceeds this optimal value, a thickening water film forms on the surfaces of the fibers and soil. This, in turn, increases lubrication and reduces friction between the fibers and soil, ultimately resulting in a decrease in the shear strength of reinforced loess.

Key words

reinforced loess / straw fiber / triaxial test / scanning electron microscope / mechanical characteristics

Cite this article

Download Citations
ZHANG Wan, DING Jiu-long, LI Bo, CHEN Ze-yi, XUE Yi-feng, ZHAO Wei. Experimental Study on Triaxial Shear Properties of Straw Fiber Reinforced Loess[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(1): 136-142 https://doi.org/10.11988/ckyyb.20230084

References

[1] 刘祖典. 黄土力学与工程[M]. 西安: 陕西科学技术出版社, 1997. (LIU Zu-dian. Loess Mechanics and Engineering[M]. Xi'an: Shaanxi Science & Technology Press, 1997.(in Chinese))
[2] 卢全中, 彭建兵, 陈志新, 等. 黄土高原地区黄土裂隙发育特征及其规律研究[J]. 水土保持学报, 2005, 19(5): 191-194. (LU Quan-zhong, PENG Jian-bing, CHEN Zhi-xin, et al. Research on Characteristics of Cracks and Fissures of Loess and Their Distribution in Loess Plateau of China[J]. Journal of Soil Water Conservation, 2005, 19(5): 191-194.(in Chinese))
[3] 杨晓华, 张建伟, 张莎莎, 等. 黄土地区高速公路地基处理技术研究进展[J]. 长安大学学报(自然科学版), 2022, 42(1): 16-32. (YANG Xiao-hua, ZHANG Jian-wei, ZHANG Sha-sha, et al. Research Progress on Foundation Treatment Techniques of Expressway in Loess Area[J]. Journal of Chang'an University (Natural Science Edition), 2022, 42(1): 16-32.(in Chinese))
[4] 李广信, 陈 轮, 郑继勤, 等. 纤维加筋黏性土的试验研究[J]. 水利学报, 1995, 26(6): 31-36. (LI Guang-xin, CHEN Lun, ZHENG Ji-qin, et al. Experimental Study on Fiber-reinforced Cohesive Soil[J]. Journal of Hydraulic Engineering, 1995, 26(6): 31-36.(in Chinese))
[5] 介玉新, 李广信, 陈 轮. 纤维加筋土和素土边坡的离心模型试验研究[J]. 岩土工程学报, 1998, 20(4): 12-15. (JIE Yu-xin, LI Guang-xin, CHEN Lun. Study of Centrifugal Model Tests on Texsol and Cohesive Soil Slopes[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(4): 12-15.(in Chinese))
[6] 张 丹,许 强,郭 莹.玄武岩纤维加筋膨胀土的强度与干缩变形特性试验[J].东南大学学报(自然科学版),2012,42(5):975-980.(ZHANG Dan,XU Qiang,GUO Ying.Experiments on Strength and Shrinkage of Expansive Soil with Basalt Fiber Reinforcement[J]. Journal of Southeast University (Natural Science Edition),2012,42(5):975-980.(in Chinese))
[7] 魏 丽,柴寿喜,张 琳,等.冻融作用下三类纤维加筋固化土的抗压抗拉性能[J].岩土力学,2022,43(12):3241-3248,3280.(WEI Li,CHAI Shou-xi,ZHANG Lin,et al.Compressive and Tensile Properties of Three Fiber-lime-soils under Freeze-thaw Cycle[J].Rock and Soil Mechanics,2022,43(12):3241-3248,3280.(in Chinese))
[8] 王 瑞, 泮晓华, 唐朝生, 等. MICP联合纤维加筋改性钙质砂的动力特性研究[J]. 岩土力学, 2022, 43(10): 2643-2654. (WANG Rui, PAN Xiao-hua, TANG Chao-sheng, et al. Dynamic Behaviors of MICP and Fiber-treated Calcareous Sand under Dynamic Triaxial Testing[J]. Rock and Soil Mechanics, 2022, 43(10): 2643-2654.(in Chinese))
[9] 李丽华, 万 畅, 刘永莉, 等. 玻璃纤维加筋砂土剪切强度特性研究[J]. 武汉大学学报(工学版), 2017, 50(1): 102-106. (LI Li-hua, WAN Chang, LIU Yong-li, et al. Shear Strength Characteristics of Glass Fiber Reinforced Sandy Soil[J]. Engineering Journal of Wuhan University, 2017, 50(1): 102-106.(in Chinese))
[10] 吴燕开,牛 斌,桑贤松.随机分布剑麻纤维加筋土力学性能试验研究[J].水文地质工程地质,2012,39(6):77-81.(WU Yan-kai,NIU Bin,SANG Xian-song.Experimental Study of Mechanical Properties of Soil Randomly Included with Sisal Fiber[J].Hydrogeology & Engineering Geology,2012,39(6):77-81.(in Chinese))
[11] 宋金岩, 孙 红, 葛修润, 等. 玻璃纤维加筋土强度特征试验研究[J]. 中外公路, 2012, 32(5): 261-264. (SONG Jin-yan, SUN Hong, GE Xiu-run, et al. Experimental Study on Strength Characteristics of Glass Fiber Reinforced Soil[J]. Journal of China & Foreign Highway, 2012, 32(5): 261-264.(in Chinese))
[12] 孙 舒, 袁学锋, 李福林, 等. 聚丙烯纤维土受力性能试验研究[J]. 长江科学院院报, 2016, 33(2): 71-73, 79. (SUN Shu, YUAN Xue-feng, LI Fu-lin, et al. Mechanical Properties of Polypropylene Fibre-reinforced Soil[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(2): 71-73, 79.(in Chinese))
[13] 张诚成,朱鸿鹄,唐朝生,等.纤维加筋土界面渐进性破坏模型[J].浙江大学学报(工学版),2015,49(10):1952-1959.(ZHANG Cheng-cheng,ZHU Hong-hu,TANG Chao-sheng,et al.Modeling of Progressive Interface Failure of Fiber Reinforced Soil[J]. Journal of Zhejiang University (Engineering Science),2015,49(10):1952-1959.(in Chinese))
[14] 郜 晓, 刘妮娜, 李 俊, 等. 加筋黄土的动力特性研究[J]. 地震工程学报, 2022, 44(4): 854-864. (GAO Xiao, LIU Ni-na, LI Jun, et al. A Study on the Dynamic Characteristics of Fiber Reinforced Loess[J]. China Earthquake Engineering Journal, 2022, 44(4): 854-864.(in Chinese))
[15] 祝艳波, 李红飞, 巨之通, 等. 黄土抗剪强度与耐崩解性能综合改良试验研究[J]. 煤田地质与勘探, 2021, 49(4): 221-233. (ZHU Yan-bo, LI Hong-fei, JU Zhi-tong, et al. Improvement of Shear Strength and Anti-disintegration Performance of Compacted Loess[J]. Coal Geology & Exploration, 2021, 49(4): 221-233.(in Chinese))
[16] 熊 雨, 邓华锋, 彭 萌, 等. 四种人工合成纤维加筋黄土的抗剪特性[J]. 长江科学院院报, 2022, 39(1): 122-126, 133. (XIONG Yu, DENG Hua-feng, PENG Meng, et al. Shear Properties of Loess Reinforced with Four Synthetic Fibers[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(1): 122-126, 133.(in Chinese))
[17] 李沛达, 骆亚生, 陈箐芮, 等. 玄武岩纤维加筋黄土承载比试验研究[J]. 水文地质工程地质, 2021, 48(1): 131-137. (LI Pei-da, LUO Ya-sheng, CHEN Qing-rui, et al. An Experimental Study of the California Bearing Ratio of Basalt Fiber Reinforced Loess[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 131-137.(in Chinese))
[18] 许 健, 武智鹏, 陈 辉. 干湿循环效应下玄武岩纤维加筋黄土三轴剪切力学行为研究[J]. 岩土力学, 2022, 43(1): 28-36. (XU Jian, WU Zhi-peng, CHEN Hui. Triaxial Shear Behavior of Basalt Fiber Reinforced Loess under Drying-wetting Cycles[J]. Rock and Soil Mechanics, 2022, 43(1): 28-36.(in Chinese))
[19] 褚 峰, 邵生俊, 邓国华, 等. 纤维纱加筋黄土一维蠕变特性试验研究[J]. 岩石力学与工程学报, 2022, 41(5): 1054-1066. (CHU Feng, SHAO Sheng-jun, DENG Guo-hua, et al. Experimental Study on One-dimensional Creep Behavior of Loess Reinforced with Fiber Yarn[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(5): 1054-1066.(in Chinese))
[20] 张心语, 雷胜友. 油菜籽壳加筋黄土劈裂抗拉特性[J]. 科学技术与工程, 2021, 21(33): 14304-14309. (ZHANG Xin-yu, LEI Sheng-you. Splitting Tensile Properties of Rapeseed Shell Reinforced Loess[J]. Science Technology and Engineering, 2021, 21(33): 14304-14309.(in Chinese))
[21] 薛中飞, 王 琳, 郑文杰. 农作废弃秸秆加筋黄土的剪切特性[J]. 长江科学院院报, 2020, 37(4): 180-186. (XUE Zhong-fei, WANG Lin, ZHENG Wen-chieh. Shearing Behavior of Loess Reinforced with Post-harvest Straw[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(4): 180-186.(in Chinese))
[22] 卢 浩, 晏长根, 杨晓华, 等. 麦秸秆加筋黄土的抗侵蚀性试验[J]. 长安大学学报(自然科学版), 2017, 37(1): 24-32. (LU Hao, YAN Chang-gen, YANG Xiao-hua, et al. Experiment on Anti-eroding Property of Reinforced Loess with Wheat Straw[J]. Journal of Chang'an University (Natural Science Edition), 2017, 37(1): 24-32.(in Chinese))
[23] 刘继鹏,张 哲.黄麻纤维加筋黄土动力特性研究[J].硅酸盐通报,2022,41(5):1663-1668, 1688.(LIU Ji-peng,ZHANG Zhe.Dynamic Properties of Jute Fiber Reinforced Loess[J]. Bulletin of the Chinese Ceramic Society,2022,41(5):1663-1668,1688.(in Chinese))
[24] 安 宁,晏长根,王亚冲,等.聚丙烯纤维加筋黄土抗侵蚀性能试验研究[J].岩土力学,2021,42(2):501-510.(AN Ning,YAN Chang-gen,WANG Ya-chong,et al. Experimental Study on Anti-erosion Performance of Polypropylene Fiber-reinforced Loess[J]. Rock and Soil Mechanics, 2021, 42(2): 501-510.(in Chinese))
[25] ZHAO F T, ZHENG Y W. Shear Strength Behavior of Fiber-reinforced Soil: Experimental Investigation and Prediction Model[J]. International Journal of Geomechanics, 2022, 22(9), Doi: 10.1061/(ASCE)GM.1943-5622.000250.
PDF(5487 KB)

Accesses

Citation

Detail

Sections
Recommended

/