Differences in Strength Properties of Soil-Rock Mixture under Simple Shear and Triaxial Compression

LI Hao-min, RAO Xi-bao, JIANG Ji-wei, XU Han, LU Yi-wei, LIU Wei

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (3) : 105-111.

PDF(1487 KB)
PDF(1487 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (3) : 105-111. DOI: 10.11988/ckyyb.20211199
ROCK-SOIL ENGINEERING

Differences in Strength Properties of Soil-Rock Mixture under Simple Shear and Triaxial Compression

  • LI Hao-min, RAO Xi-bao, JIANG Ji-wei, XU Han, LU Yi-wei, LIU Wei
Author information +
History +

Abstract

Large-scale laminar-ring simple shear test and large-scale triaxial test of soil-rock mixture(SRM) were carried out. The stress state of samples in simple shear was analyzed according to the joint test law of granular material and sand in simple shear. The differences in the strength properties of SRM under simple shear and triaxial compression were then explored. Results reveal that: (i) With the same minimum principal stress, the rate of maximum principal stress in simple shear is lower and changes in a smaller range, and the peak value of principal stress ratio is lower, which means the ultimate Mohr's circle of stress is smaller. (ii) The secant shear modulus under simple shear is anisotropic, and the secant shear modulus in horizontal direction is constantly lower than that under triaxial compression, but such difference shortens with the decrease of non-coaxiality degree between principal stress axes and principal strain axes. (iii) For the samples used, the shear strength indices of Mohr-Coulomb strength criterion obtained under simple shear are significantly lower than those under triaxial compression, and in particular, the internal friction angle is about 9.5% lower. Preliminary investigation shows that the rotation of principal stress axes and non-coaxiality in simple shear are important reasons for the differences of strength properties of SRM.

Key words

soil-rock mixture / strength properties / large-scale simple shear test / large-scale triaxial test / rotation of principal stress axes / non-coaxiality

Cite this article

Download Citations
LI Hao-min, RAO Xi-bao, JIANG Ji-wei, XU Han, LU Yi-wei, LIU Wei. Differences in Strength Properties of Soil-Rock Mixture under Simple Shear and Triaxial Compression[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(3): 105-111 https://doi.org/10.11988/ckyyb.20211199

References

[1] 徐文杰, 胡瑞林. 土石混合体概念、分类及意义[J]. 水文地质工程地质, 2009, 36(4): 50-56.
[2] 田湖南, 焦玉勇, 王 浩, 等. 土石混合体力学特性的颗粒离散元双轴试验模拟研究[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3564-3573.
[3] 江洎洧, 程展林, 潘家军, 等. 基于大型叠环剪切试验的松散土石体强度及变形特性试验研究[J]. 岩石力学与工程学报, 2017, 36(增刊1): 3636-3643.
[4] 王艳丽, 程展林, 潘家军, 等. 岩土工程三轴试验微摩擦荷载传力板的研制及初步应用[J]. 岩土工程学报, 2020, 42(12): 2316-2321.
[5] 于玉贞, 张向韬, 王 远, 等. 堆石料真三轴条件下力学特性试验研究进展[J].工程力学, 2020, 37(4): 1-21,29.
[6] 褚福永, 朱俊高, 王 平, 等. K0固结条件下粗粒土变形及强度特性研究[J]. 岩土力学, 2012, 33(6): 1625-1630.
[7] 江洎洧, 潘家军, 程展林, 等. 基于大型真三轴试验的粗粒料强度特性研究[J]. 岩土工程学报, 2018, 40(增刊2): 32-36.
[8] 潘家军, 程展林, 余 挺, 等. 不同中主应力条件下粗粒土应力变形特性试验研究[J]. 岩土工程学报, 2016, 38(11): 2078-2084.
[9] 施维成, 朱俊高, 张 博, 等. 粗粒土在平面应变条件下的强度特性研究[J]. 岩土工程学报, 2011, 33(12): 1974-1979.
[10] FRYDMAN S, TALESNICK M. Simple Shear of Isotropic Elasto-Plastic Soil[J]. International Journal for Numerical and Analytical Method in Geomechanics, 1991, 15(4): 251-270.
[11] 杜子博, 钱建固, 黄茂松. 考虑主应力轴旋转效应的交通荷载下饱和软黏土变形特性试验研究[J]. 岩石力学与工程学报, 2016, 35(5): 1031-1040.
[12] 蔡燕燕, 俞 缙, 余海岁, 等. 考虑主应力轴旋转的砂土变形特性试验研究[J]. 岩石力学与工程学报, 2013, 32(2): 417-424.
[13] 黄茂松,孙海忠,钱建固.粗粒土的非共轴性及其离散元数值模拟[J].水利学报,2010,41(2):173-181.
[14] 冯大阔, 张建民. 粗粒土与结构接触面静动力学特性的大型单剪试验研究[J].岩土工程学报, 2012, 34(7):1201-1208.
[15] 王艳丽, 饶锡保, 潘家军,等. 砂砾石垫层料与混凝土面板接触面特性的大型单剪试验研究[J].岩土工程学报, 2019, 41(8):1538-1544.
[16] GB/T 50145—2007,土的工程分类[S]. 北京:中国计划出版社,2008.
[17] BUDHU M. Nonuniformities Imposed by Simple Shear Apparatus[J]. Canadian Geotechnical Journal, 1984, 22(1):125-137.
[18] MATTHIEU G. The Boundary Conditions in Direct Simple Shear Tests: Developments for Peat Testing at Low Normal Stress[D]. Delft: Delft University of Technology, 2011.
[19] WROTH C P. The Behaviour of Normally Consolidated Clay as Observed in Undrained Direct Shear Tests[J]. Geotechnique, 1987, 37(1): 37-43.
[20] ODA M, KONISHI J. Rotation of Principal Stresses in Granular Material During Simple Shear[J]. Soils and Foundations, 1974, 14(4): 39-53.
[21] ODA M. On the Relation in the Simple Shear Test[J]. Soils and Foundations, 1975, 15(4): 35-41.
[22] WOOD D M,DRESCHER A,BUDHU M. On the Determination of the Stress State in the Simple Shear Apparatus[J]. ASTM Geotechnical Testing Journal, 1979, 2(4):211-222.
[23] YAO Li,YANG Yun-ming,YU Hai-sui,et al. Principal Stress Rotation under Bidirectional Simple Shear Loadings[J]. KSCE Journal of Civil Engineering, 2018, 22(5):1651-1660.
[24] 田 雨, 姚仰平, 罗 汀. 从各向异性的角度解释和模拟土的非共轴特性[J]. 岩土力学, 2018, 39(6):2035-2042.
PDF(1487 KB)

Accesses

Citation

Detail

Sections
Recommended

/