This paper presents an experiment aimed at investigating the influence of blending PVA fiber and nano-SiO2 on the fatigue resistance of concrete.The experimental specimens are divided into three groups: blending PVA fiber only (Group P),nano-SiO2 only (Group S),and PVA fiber mixed with nano-SiO2 (Group SP).Uniaxial compression tests were performed on the specimens subjected to multiple-cycle fatigue loading, and the resulting data were used to assess their fatigue resistance.The relative dymanic elastic modulus and compressive strength of specimens after the tests were taken as the assessment indices.Additionally,SEM was employed to observe and analyze the microscopic action mechanism.The findings reveal that all three concrete groups exhibit a notable improvement in fatigue resistance compared to ordinary concrete,although the manner of improvement differs.Group S demonstrates the most notable enhancement in concrete strength, while group SP effectively suppresses the development of internal degradation in concrete. In terms of the underlying mechanisms,PVA fibers enhance the tensile capacity between concrete elements,effectively reducing damage and failure under fatigue loads, thereby prolonging the concrete’s failure process.Nano SiO2 participates in the reaction to generate C-S-H (calcium silicate hydrate) gel,filling the weak areas of the concrete and improving its compressive strength,thus raising the starting point of failure under fatigue loads.These findings provide valuable insights for the design of fatigue-resistant concrete structures.
Key words
concrete mixed PVA fiber and Nano-SiO2 /
fatigue resistance /
scanning electron microscope(SEM) /
microscopic mechanism
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 赵建军, 闫长旺, 刘曙光, 等. PVA纤维混凝土力学性能试验研究与分析[J]. 武汉理工大学学报, 2017, 39(8): 65-69.
[2] 张 鹏, 李晨迪, 王 娟, 等. 纳米SiO2和PVA纤维协同增强混凝土力学性能[J]. 公路, 2021, 66(2): 271-275.
[3] 梁 圣,崔宏志,徐丹玥. 纳米SiO2改性轻骨料混凝土性能[J]. 复合材料学报,2019,36(2):498-505.
[4] 肖建庄, 李 宏. 再生混凝土单轴受压疲劳性能[J]. 土木工程学报, 2013, 46(2): 62-69.
[5] 田立宗, 逯静洲, 朱孔峰, 等. 冻融循环与疲劳荷载作用下混凝土损伤研究[J]. 长江科学院院报, 2018, 35(2):140-144, 150.
[6] 金光日,方 涛,王俊锋,等. PVA纤维掺和胶凝砂砾石材料的力学性能研究[J]. 长江科学院院报,2018,35(9):148-153,158.
[7] 朱孔峰. 疲劳荷载与冻融循环作用后混凝土动态特性试验研究[D].烟台:烟台大学,2017.
[8] 逯静洲, 田立宗, 童立强, 等. 经受疲劳荷载与冻融循环作用后混凝土动态性能研究[J]. 应用基础与工程科学学报, 2018, 26(5): 1055-1066.
[9] 董健苗, 刘 晨, 龙世宗. 纳米SiO2在不同分散条件下对水泥基材料微观结构、性能的影响[J]. 建筑材料学报, 2012, 15(4): 490-493.
[10] 燕 兰,邢永明,赵建军,等.纳米SiO2 对钢纤维混凝土高温抗压性能的影响及微观分析[J].混凝土,2017(12):87-91.
[11] 高 真,曹 鹏,孙新建,等.岩纤维混凝土抗压强度分析与微观表征[J].水力发电学报,2018,37(8):111-120.
[12] SUN Z,XU Q.Microscopic, Physical and Mechanical Analysis of Polypropylene Fiber Reinforced Concrete[J]. Materials Science and Engineering:A,2009,527(1/2):198-204.
[13] DIAMOND S, HUANG J. The ITZ in Concrete-a Different View Based on Image Analysis and SEM Observations[J]. Cement and Concrete Composites, 2001, 23(2/3): 179-188.
[14] VISWANATH S, LAFAVE J M, KUCHMA D A. Concrete Compressive Strain Behavior and Magnitudes under Uniaxial Fatigue Loading[J]. Construction and Building Materials, 2021, 296: 123718.
[15] JANG J G, KIM H K, KIM T S, et al. Improved Flexural Fatigue Resistance of PVA Fiber-Reinforced Concrete Subjected to Freezing and Thawing Cycles[J]. Construction and Building Materials, 2014, 59: 129-135.
[16] OZKAN S, COBAN O. The Hybrid Effects of Basalt and PVA Fiber on Properties of a cCementitious Composite: Physical Properties and Non-destructive Tests[J]. Construction and Building Materials, 2021, 312: 125292.
[17] LIU F, XU K, DING W, et al. Microstructural Characteristics and Their Impact on Mechanical Properties of Steel-PVA Fiber Reinforced Concrete[J]. Cement and Concrete Composites, 2021, 123: 104196.