Graded loading and unloading test was conducted with different frequencies by using GDS dynamic triaxial instrument to explore the influences of sea sand content and vibration frequency on the dynamic stress-dynamic strain (σd-εd) relationship, dynamic elastic modulus and damping ratio of sea sand composite solidified silt. Test results show that the σd-εd curve is linear at small dynamic stress; when dynamic stress is increased stepwise, dynamic strain increases rapidly until failure. At a given frequency, the stress-strain curve first rises and then moves down with the increase of sea sand content; the stress-strain curve of solidified silt with 15% dosage of sea sand is at the top. At a given sea sand content, the dynamic deformation under high frequency is smaller than that at low frequency, and the dynamic strength is higher than that at low frequency. Under varying sea sand content and frequency and growing dynamic stress, the dynamic elastic modulus Ed of solidified silt first increases and then declines, the damping ratio λ decreases slightly and then gradually increases, and the hysteretic energy consumption ΔW increases nonlinearly. The corresponding ΔW under the same dynamic stress decreases with the increase of frequency. By increasing the frequency and mixing a proper amount of sea sand, the dynamic elastic modulus of solidified silt can be improved, and the damping ratio of the solidified silt can be effectively reduced.
Key words
sea sand composite solidified silt /
GDS dynamic triaxial test /
dynamic stress-strain curve /
dynamic elastic modulus /
damping ratio /
hysteretic energy consumption
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 王东星,陈政光.氯氧镁水泥固化淤泥力学特性及微观机制[J].岩土力学,2021,42(1):77-85,92.
[2] 董宝中,陈永超.离子固化淤泥土的强度特征与破坏模式[J].安徽理工大学学报(自然科学版),2019,39(4):52-55.
[3] SAWA K, TOMOHISA S, INAZUMI S, et al. Hardening Treatment of Muddy Soil with Coal Fly Ashes[J]. Journal of the Society of Materials Science Japan, 2000, 49(3):348-351.
[4] 李丽芬.水泥-消石灰-半水石膏固化红土的组成、结构与性能关系的研究[D].南宁:广西大学,2008.
[5] 刘平平, 许燕宾, 艾志伟, 等. 水泥固化淤泥质土-砂混合软土的工程特性研究[J]. 江西理工大学学报, 2014(5):45-50.
[6] 乔京生,王旭影,王冠泓,等.粒化高炉矿渣微粉固化淤泥质土的动力特性及微观机理[J].硅酸盐通报,2021,40(7):2306-2312.
[7] 张向东,任 昆.煤渣改良土的阻尼比影响因素试验研究[J].公路交通科技,2019,36(10):43-51.
[8] 文畅平,任睆遐.生物酶改良膨胀土的动骨干曲线模型[J].中南大学学报(自然科学版),2021,52(4):1109-1117.
[9] 陈 宝,郭家兴,李池龙.交通荷载下石灰改良软土路基的动力特性试验研究[J].路基工程,2014(5):103-109.
[10] CHEN B, GUO J, LI C L. Test Study on Dynamic Characteristics of Lime Stabilized Soft Soil Subgrade under Traffic Loading[J]. Subgrade Engineering, 2014, doi: 10.1063/1.114528.
[11] WANG J, WANG Q, ZHONG X M, et al. Research for Dynamic Modulus and Ing Ratio of Fly Ash Modified Loess[J]. Advanced Materials Research, 2013, 671/674: 94-100.
[12] ZHANG X D,REN K.Experimental Study on Dynamic Elastic Modulus and Critical Dynamic Stress of Cinder Improved Soil Subgrade[J]. Journal of Highway and Transportation Research and Development,2018,12(4):25-32.
[13] 柴芮祥,吴 恺,崔锦梅,等. 砂-复合固化淤泥路用强度特性试验研究[J]. 地基处理,2020,2(6):471-477.
[14] 庄心善,王俊翔,王 康,等.风化砂改良膨胀土的动力特性研究[J].岩土力学,2018,39(增刊2):149-156.
[15] 蔡袁强,赵 莉,曹志刚,等.不同频率循环荷载下公路路基粗粒填料长期动力特性试验研究[J].岩石力学与工程学报, 2017,36(5):1238-1246.
[16] 庄 涛. 磷尾矿改良膨胀土动力特性研究[D].武汉:湖北工业大学,2020.
[17] 姚义胜. 基于泡沬轻质土复合路基的半刚性路面结构优化及动力响应研究[D].济南:山东大学,2021.
[18] 陈瑞锋,闫炜炀,刘晓凤,等.不同含水率下赤泥改良土的动弹性模量及阻尼比研究[J].硅酸盐通报,2017,36(8):2810-2815.
[19] 王晶晶. 改良粉砂土路基动力特性研究[D].郑州:河南大学,2019.
[20] 刘靖宇,刘朝晖,王旭东,等.动态回弹性模量量滞回曲线形态参数研究[J].公路交通科技,2017,34(10):6-12.