Experimental Study on the Strength of Cemented Soil in Baishan Navigation Lock of Yangtze-Huaihe Water Diversion Project

WANG Zhi-yong, DU Guang-yin, ZHANG Ding-wen, SONG Tao, YANG Yong

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (6) : 147-153.

PDF(1482 KB)
PDF(1482 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (6) : 147-153. DOI: 10.11988/ckyyb.20211403
Rock-Soil Engineering

Experimental Study on the Strength of Cemented Soil in Baishan Navigation Lock of Yangtze-Huaihe Water Diversion Project

  • WANG Zhi-yong1,2, DU Guang-yin1,2, ZHANG Ding-wen1,2, SONG Tao3, YANG Yong4
Author information +
History +

Abstract

Intelligent bidirectional cement-soil mixing technology has been applied in the Baishan navigation lock of the Yangtze-Huaihe water diversion project. To investigate the strength variation of the cemented soil in the Baishan navigation lock and assess the effectiveness of the new technology, we prepared cemented soil specimens with varying shapes, cement ratios, and curing ages. These specimens underwent unconfined compressive strength tests and triaxial unconsolidated and undrained tests, allowing us to obtain the stress-strain relationship, compressive strength, and shear strength parameters. The results of the laboratory tests indicate that the stress-strain relationship of the cemented soil exhibits strain softening behavior. The unconfined compressive strength increases with the growth of cement ratio and curing age, showing an approximate linear correlation with the logarithm of curing age. Under the same conditions, 90-d age cylindrical specimens display a strength approximately 13% higher than cubic specimens. The ratio of deformation modulus to unconfined compressive strength ranges from 55.6 to 96.2 and is significantly influenced by the age of the specimens. Cohesion and unconfined compressive strength can be described as approximate linear growth relationship, and the internal friction angle ranges from 22° to 33°. The in-situ core samples exhibit a strength exceeding 70% of that of laboratory cemented soil, demonstrating that the strength ratio expression helps compensate for the strength discrepancy between laboratory and in-situ cemented soil. Scanning electron microscope (SEM) results also unveil the mechanism behind the strength growth of cemented soil from a micro perspective.

Key words

cemented soil / unconfined compressive strength / shear strength / triaxial test / micro-mechanism

Cite this article

Download Citations
WANG Zhi-yong, DU Guang-yin, ZHANG Ding-wen, SONG Tao, YANG Yong. Experimental Study on the Strength of Cemented Soil in Baishan Navigation Lock of Yangtze-Huaihe Water Diversion Project[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(6): 147-153 https://doi.org/10.11988/ckyyb.20211403

References

[1] 刘松玉. 新型搅拌桩复合地基理论与技术[M]. 南京: 东南大学出版社, 2014.
[2] 刘松玉, 席培胜, 储海岩, 等. 双向水泥土搅拌桩加固软土地基试验研究[J]. 岩土力学, 2007, 28(3): 560-564.
[3] BAHAR R, BENAZZOUG M, KENAI S. Performance of Compacted Cement-Stabilised Soil[J]. Cement and Concrete Composites, 2004, 26(7): 811-820.
[4] 梁仁旺, 张 明, 白晓红. 水泥土的力学性能试验研究[J]. 岩土力学, 2001, 22(2):211-213.
[5] 陈 甦, 彭建忠, 韩静云, 等. 水泥土强度的试件形状和尺寸效应试验研究[J]. 岩土工程学报, 2002, 24(5): 580-583.
[6] 王贤昆, 庞建勇, 王 强. 复合水泥土无侧限抗压强度正交试验研究[J]. 长江科学院院报, 2015, 32(12): 72-75.
[7] YANG W, WANG K, LI L, et al. Experimental Analysis on the Properties of Different Cement-Soils with Different Cement Content and Curing Times[C]∥Geo-China 2016. Shandong, China. Reston, VA: American Society of Civil Engineers, 2016: 248-261.
[8] HORPIBULSUK S, MIURA N, NAGARAJ T S. Assessment of Strength Development in Cement-Admixed High Water Content Clays with Abrams’ Law as a Basis[J]. Géotechnique, 2003, 53(4): 439-444.
[9] SAKKA H, OCHIAI H, YASUFUKU N, et al. A Nondestructive Testing for Evaluating the Improvement Effect of Cement-stabilized Soils[C]∥Proceedings of the International Symposium on Lowland Technology. Saga University, Japan. November 4-6, 1998.
[10]储诚富, 洪振舜, 刘松玉, 等. 用似水灰比对水泥土无侧限抗压强度的预测[J]. 岩土力学, 2005, 26(4):645-649.
[11]阮锦楼,阮 波, 阳军生, 等. 粉质粘土水泥土无侧限抗压强度试验研究[J]. 铁道科学与工程学报, 2009, 6(3):56-60.
[12]曹智国, 章定文. 水泥土无侧限抗压强度表征参数研究[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3446-3454.
[13]王达爽, 杨俊杰, 董猛荣, 等. 水泥土强度预测室内试验研究[J]. 中国海洋大学学报(自然科学版), 2018, 48(7):96-102.
[14]王珊珊, 卢成原, 孟凡丽. 水泥土抗剪强度试验研究[J]. 浙江工业大学学报, 2008, 36(4): 456-459.
[15]阮 波,彭学先,邓林飞.水泥土抗剪强度参数试验研究[J].铁道科学与工程学报,2016,13(4):662-668.
[16]秦网根, 蔡正银, 关云飞, 等. 典型区域软弱土室内水泥固化三轴CD试验[J]. 重庆交通大学学报(自然科学版), 2020, 39(1):103-108,114.
[17]张 陈, 李 娜, 王 伟, 等. 纳米MgO改性滨海水泥土的直剪试验及微观机理[J]. 长江科学院院报, 2019, 36(4): 135-139.
[18]JTG D30―2015, 公路路基设计规范[S]. 北京: 人民交通出版社, 2015.
[19]GB/T 50123―2019, 土工试验方法标准[S]. 北京: 中国计划出版社, 2019.
[20]JGJ/T 233―2011, 水泥土配合比设计规程[S]. 北京: 中国建筑工业出版社, 2011.
[21]UDDIN K. Strength and Deformation Behaviour of Cement Treated Bangkok Clay[D]. Bangkok: Asian Institute of Technology, 1994.
[22]ZHANG R J, SANTOSO A M, TAN T S, et al. Strength of High Water-Content Marine Clay Stabilized by Low Amount of Cement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(12): 2170-2181.
[23]李建军, 梁仁旺. 水泥土抗压强度和变形模量试验研究[J]. 岩土力学, 2009, 30(2):473-477.
[24]高鹏飞, 胡建林, 崔宏环, 等. 不同土质水泥土力学特性的影响因素研究[J]. 水利与建筑工程学报, 2021, 19(3): 131-136.
[25]薛慧君,申向东,邹春霞,等.水泥土早期力学性能影响因素分析[J].硅酸盐通报,2014,33(8):2056-2062.
[26]周丽萍, 申向东. 水泥土力学性能的试验研究[J]. 硅酸盐通报, 2009, 28(2): 359-365.
[27]谢胜华, 刘松玉, 杜广印. 双向粉喷桩处理海相软土室内外强度对比分析[J]. 安徽工业大学学报(自然科学版), 2013, 30(3): 308-312.
[28]陈 峰, 赖锦华. 粉煤灰水泥土变形特性实验研究[J]. 工程地质学报, 2016, 24(1): 96-101.
[29]杨 健, 李晓丽, 王 辉, 等. 复合粉煤灰砒砂岩水泥土力学性能室内试验研究[J]. 排灌机械工程学报, 2021, 39(12):1230-1236.
[30]赵永刚,李粮纲, 余 雷. 水泥搅拌桩粉喷法和浆喷法处理软土路基研究[J].铁道建筑,2009,49(9):79-82.
PDF(1482 KB)

Accesses

Citation

Detail

Sections
Recommended

/