Energy Properties of Original Damaged Gneiss During Deformation Failure

FENG Wei, DENG Rong-gui, WANG Tuo, CHEN Ba-jin

Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (2) : 71-76.

PDF(3268 KB)
PDF(3268 KB)
Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (2) : 71-76. DOI: 10.11988/ckyyb.20170645
ROCK SOIL ENGINEERING

Energy Properties of Original Damaged Gneiss During Deformation Failure

  • FENG Wei, DENG Rong-gui, WANG Tuo, CHEN Ba-jin
Author information +
History +

Abstract

In an attempt to investigate the energy variation properties of gneiss under different initial fracture states, uniaxial and triaxial tests were designed and conducted on rock specimens from a tunnel project. By analyzing the stress-strain curves of test specimens, the evolution of energy with strain was obtained. Results show that in-situ stress environment has great influence on the properties of rock specimens. The energy evolution rule of gneiss can be divided into three stages in triaxial test: secondary steady growth stage, stable fracture stage, and accelerated fracture stage. Gneiss of high damage degree is of weak ability to restore elastic energy.The expansion of gneiss is more obvious and fracture occurs at more positions. Fractured compacted rock stores higher proportion of elastic energy, with more apparent brittle failure. If the practical energy release rate is higher than theoretical elastic energy release rate under confining pressure unloading, damage will be produced to weaken the strength of rock.This study enriches the cognition of energy evolution of damaged rock mass and provides a new idea for the construction in gneiss engineering.

Key words

gneiss / elastic energy / energy dissipation / uniaxial test / triaxial test / damage degree

Cite this article

Download Citations
FENG Wei, DENG Rong-gui, WANG Tuo, CHEN Ba-jin. Energy Properties of Original Damaged Gneiss During Deformation Failure[J]. Journal of Changjiang River Scientific Research Institute. 2019, 36(2): 71-76 https://doi.org/10.11988/ckyyb.20170645

References

[1] 谢和平,鞠 杨,黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003-3010.
[2] 彭瑞东,鞠 杨,高 峰,等. 三轴循环加卸载下煤岩损伤的能量机制分析[J].煤炭学报,2014,39(2):245-252.
[3] 刘天为,何江达,徐文杰. 大理岩三轴压缩破坏的能量特征分析[J].岩土工程学报,2013,35(2):395-400.
[4] 陈学章,何江达,肖明砾,等. 三轴卸荷条件下大理岩扩容与能量特征分析[J].岩土工程学报,2014,36(6):1106-1112.
[5] 杨永明,鞠 杨,陈佳亮,等. 三轴应力下致密砂岩的裂纹发育特征与能量机制[J].岩石力学与工程学报,2014,33(4):691-698.
[6] 温 韬,唐辉明,刘佑荣,等. 不同围压下板岩三轴压缩过程能量及损伤分析[J].煤田地质与勘探,2016,44(3):80-86.
[7] 温 韬,唐辉明,刘佑荣,等. 考虑裂纹闭合效应的岩石损伤力学模型及耗散能量分析[J].长江科学院院报,2016,33(5):69-75.
[8] 钟志彬,邓荣贵,李 佳,等. 天然裂隙性流纹岩三轴力学特性试验研究[J].岩石力学与工程学报,2014,33(6):1233-1240.
[9] 赵永川,刘洪磊,杨天鸿,等. 中生代砂岩细观结构对强度和能量耗散的影响[J].煤炭学报,2017,42(2):452-459.
[10] 张希巍,杨成祥,张 柬,等. 红透山铜矿深部片麻岩力学行为试验研究[J].岩石力学与工程学报,2013,32(增2):3228-3237.
[11] 高 红.MTS815岩石试验机应变测量与控制分析[C] ∥台湾大学、北京科技大学.2010年海峡两岸材料破坏/断裂学术会议暨第十届破坏科学研讨会/第八届全国MTS材料试验学术会议论文集. 台湾大学、北京科技大学,2010:5.
[12] 田 勇,俞然刚. 不同围压下灰岩三轴压缩过程能量分析[J].岩土力学,2014,35(1):118-122,129.
PDF(3268 KB)

Accesses

Citation

Detail

Sections
Recommended

/