Wave Prevention and Energy Dissipation Effect of a New Type of Seawall Revetment Structure with Hyperbolic Arc Surface

ZHOU Ye-kai, QIN Peng, LI Jie-cheng, KUANG Yi, TIAN Lei, WU Shi-qi, XU Xin-yue

Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (4) : 89-94.

PDF(1406 KB)
PDF(1406 KB)
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (4) : 89-94. DOI: 10.11988/ckyyb.20221444
Hydraulics

Wave Prevention and Energy Dissipation Effect of a New Type of Seawall Revetment Structure with Hyperbolic Arc Surface

  • ZHOU Ye-kai1,2, QIN Peng1,2, LI Jie-cheng2, KUANG Yi3, TIAN Lei2, WU Shi-qi2, XU Xin-yue2
Author information +
History +

Abstract

Developing new types of seawall revetment holds significant importance in safeguarding lives and enhancing the stability of seawall projects. To address the challenge of ineffective buffering of strong shock waves caused by the swift current in the Qiantang River estuary and the smooth surface of traditional seawalls, we have devised a seawall revetment structure with hyperbolic arc surface. Through indoor hydraulic testing and numerical simulation, we examined the wave dissipation effect and pressure distribution characteristics of the structure. Findings demonstrate that the new seawall revetment structure not only improves energy dissipation by guiding and altering the pattern and direction of impact wave flow, but also enhances the aesthetic appeal of the Qiantang River tide. This approach presents a novel engineering concept for designing seawall revetment structures in complex water flow conditions.

Key words

hyperbolic arc surface / seawall revetment / indoor hydraulic test / numerical simulation / energy dissipation and wave prevention

Cite this article

Download Citations
ZHOU Ye-kai, QIN Peng, LI Jie-cheng, KUANG Yi, TIAN Lei, WU Shi-qi, XU Xin-yue. Wave Prevention and Energy Dissipation Effect of a New Type of Seawall Revetment Structure with Hyperbolic Arc Surface[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(4): 89-94 https://doi.org/10.11988/ckyyb.20221444

References

[1] 陈文江, 张海标, 毛建东, 等. 混凝土缓凝成像装配式挡墙在钱塘江海塘护坡工程中的应用[J]. 混凝土世界, 2019,40(7): 52-56. (CHEN Wen-jiang, ZHANG Hai-biao, MAO Jian-dong, et al. Application of Fabricated Retaining Wall with Concrete Retarding Imaging in the Qiantang River Seawall Slope Protection Project[J]. China Concrete, 2019, 40(7): 52-56.(in Chinese))
[2] 何震洲, 黄海珍, 李磊岩, 等. 钱塘江涌潮年内变化特征及其影响因素[J]. 水电能源科学, 2021, 39(1): 35-37, 34. (HE Zhen-zhou, HUANG Hai-zhen, LI Lei-yan, et al. Annual Variation Characteristics of Tidal Bore in Qiantangjiang River and Its Influencing Factors[J]. Water Resources and Power, 2021, 39(1): 35-37, 34.(in Chinese))
[3] 胡玉植, 潘 毅, 陈永平. 海堤背水坡加筋草皮抗冲蚀能力试验研究[J]. 水利水运工程学报, 2016,37(1): 51-57. (HU Yu-zhi, PAN Yi, CHEN Yong-ping. Experimental Studies on Scouring Resistance of Reinforced Turf on Land-side Slope[J]. Hydro-Science and Engineering, 2016, 37(1): 51-57.(in Chinese))
[4] 罗佳敏, 秦 鹏, 王嘉威, 等. 一种新型护坡结构的防浪消能效果水力试验[J]. 浙江水利水电学院学报, 2018, 30(5): 24-27, 49. (LUO Jia-min, QIN Peng, WANG Jia-wei, et al. Hydraulic Test of Wave Resistant and Energy Dissipation in a New Slope Protection Structure[J]. Journal of Zhejiang University of Water Resources and Electric Power, 2018, 30(5): 24-27, 49.(in Chinese))
[5] 陈振华, 臧振涛, 许 沿. 低成本的海堤迎潮面护面结构生态化改造方法探讨[J]. 浙江水利科技, 2020, 48(4): 80-85. (CHEN Zhen-hua, ZANG Zhen-tao, XU Yan. Low-cost Ecological Renovation Methods for Seawall Protection Structure Against Tidal Front[J]. Zhejiang Hydrotechnics, 2020, 48(4): 80-85.(in Chinese))
[6] 秦 鹏, 高 健, 秦植海, 等. 防浪废轮胎护坡结构: 中国,CN205975479U[P]. 2017-02-22. (QIN Peng, GAO Jian, QIN Zhi-hai, et al. Scrap Tire Slope Protection Structure to Prevent Waves: China, CN205975479U[P]. 2017-02-22.(in Chinese))
[7] 王飞朋,邵宇阳,吕 博,等.混凝土铰链排护坡式海堤波压力试验研究[J].水运工程,2016(11):18-24.(WANG Fei-peng,SHAO Yu-yang,LYU Bo,et al.Experimental Study of the Wave Pressure on Seawall with Hinged Concrete Slab Mattress Revetment[J]. Port & Waterway Engineering,2016(11):18-24.(in Chinese))
[8] 秦 鹏, 欧 剑, 张晓悦, 等. 一种江堤双曲弧面安全岸坡: 中国,CN204753496U[P]. 2015-11-11. (QIN Peng, OU Jian, ZHANG Xiao-yue, et al. River Dyke Safety Bank Slope with Hyperbolic Arc Surface: China, CN204753496U[P]. 2015-11-11.(in Chinese))
[9] 秦 鹏,励 泽,吴钧辉,等.一种新型溢流坝面结构的消能效果数值模拟研究[J].水电能源科学,2021,39(6):77-80.(QIN Peng,LI Ze,WU Jun-hui,et al. Numerical Simulation of Energy Dissipation Effect of a New Type of Overflow Dam Surface Structure[J]. Water Resources and Power,2021,39(6):77-80.(in Chinese))
[10] 吴持恭.水力学 [M].北京:高等教育出版社,2011.(WU Chi-gong. Hydraulics[M]. Beijing: Higher Education Press, 2011. (in Chinese))
[11] 秦 鹏, 程春梅, 秦植海, 等. 一种可用于极端流态溃坝过程中水流冲刷力测量装置的研发[J]. 水电能源科学, 2017, 35(6): 175-177. (QIN Peng, CHENG Chun-mei, QIN Zhi-hai, et al. Device Used for Water Erosion Force Measurement in Dam-break Process of Extreme Flow Pattern[J]. Water Resources and Power, 2017, 35(6): 175-177.(in Chinese))
[12] 励 泽, 秦 鹏, 张黎明, 等. 一种新型溢流坝面结构的消能效果及空化特性研究[J]. 水电能源科学, 2022, 40(1): 103-106. (LI Ze, QIN Peng, ZHANG Li-ming, et al. Energy Dissipation Effect and Cavitation Characteristic of a New Type of Overflow Dam Surface Structure[J]. Water Resources and Power, 2022, 40(1): 103-106.(in Chinese))
[13] TAHERI FARD A R. Influence of Vegetation on Shear Stress and Flow Rate in Open Channel Using Flow3D[J]. Civil Engineering Research Journal, 2020, 9(5):141-149.
[14] 侯勇俊,熊 烈,何环庆,等.基于FLOW-3D的三维数值波流水槽的构建及应用研究[J].海洋科学,2015,39(9):111-116.(HOU Yong-jun,XIONG Lie,HE Huan-qing, et al. Three-dimensional Wave-current Numerical Model and Application Based on FLOW-3D[J]. Marine Sciences,2015,39(9):111-116.(in Chinese))
PDF(1406 KB)

Accesses

Citation

Detail

Sections
Recommended

/