Variation Law of Water Pressure in Crack under Earthquake Loads

YANG Kai-gang, LI Zong-li, ZHANG Guo-hui

Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (9) : 143-147.

PDF(3155 KB)
PDF(3155 KB)
Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (9) : 143-147. DOI: 10.11988/ckyyb.20170219
HYDRAULIC STRUCTURE AND MATERIAL

Variation Law of Water Pressure in Crack under Earthquake Loads

  • YANG Kai-gang, LI Zong-li, ZHANG Guo-hui
Author information +
History +

Abstract

Water-containing cracks on concrete gravity dam are susceptible to instability due to additional water pressure generated by water compression caused by the rapid opening and closing of cracks under seismic load. In an attempt to obtain the variation law of water pressure in cracks under seismic load, we deducted the formula of additional water pressure in cracks under seismic load based on the assumption that the crack is oval. By case study, we analyzed the changes of additional pressure and factor of stress intensity at crack tip in different directions in the presence of varying crack size and drainage rate. Results revealed that the maximum additional water pressure of the calculation case reached 7.55 times of initial water pressure under seismic load. Meanwhile, with the increase of initial crack width, the maximum additional water pressures and the factor of stress intensity at crack tip declined rapidly; with the decrease of initial crack width, the influence of drainage rate on additional water pressure became more evident. In addition, the inclination angle of crack had no obvious impact on the factor of stress intensity at crack tip.

Key words

crack / seismic load / calculation model / maximum additional water pressure / stress intensity factor

Cite this article

Download Citations
YANG Kai-gang, LI Zong-li, ZHANG Guo-hui. Variation Law of Water Pressure in Crack under Earthquake Loads[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(9): 143-147 https://doi.org/10.11988/ckyyb.20170219

References

[1] 陈厚群. 水工混凝土结构抗震研究进展的回顾和展望[J]. 中国水利水电科学研究院学报, 2008, 6(4):3-15.
[2] 崔华丽,费文平,张国强.岩质高边坡裂缝成因分析[J]. 长江科学院院报, 2011, 28(2):45-49.
[3] 王志远. 重力坝的实测坝踵应力及原因分析[J].水电与抽水蓄能, 2000, 24(6):14-17.
[4] 贾金生, 李新宇, 郑璀莹. 特高重力坝考虑高压水劈裂影响的初步研究[J]. 水利学报, 2006, 37(12):1509-1515.
[5] 汪 洋, 贾金生, 冯 炜,等. 考虑高压水劈裂的高重力坝安全性试验研究[J]. 水利学报, 2016, 47(11):1397-1404.
[6] SLOWIK V.Water Pressure in Propagating Concrete Cracks[J].Journal of Structural Engineering, 2000, 126(2):235-242.
[7] VISSER J H M. Extensile Hydraulic Fracturing of (Saturated) Porous Materials [J]. Civil Engineering & Geosciences, 1998, 44(Sup.1): 13-14.
[8] TINAWI R, GUIZANI L. Formulation of Hydrodynamic Pressures in Cracks Due to Earthquakes in Concrete Dams[J]. Earthquake Engineering & Structural Dynamics, 1994, 23(7):699-715.
[9] 钟波波, 张永彬, 白象元,等. 非均匀介质在动荷载作用下的裂缝扩展研究[J]. 长江科学院院报, 2014, 31(11):26-30.
[10]刘钧玉, 林 皋, 胡志强,等. 裂纹内水压分布对重力坝断裂特性的影响[J]. 土木工程学报, 2009,42(3):132-141.
[11]黄 云, 金 峰, 王光纶,等. 高拱坝上游坝踵裂缝稳定性及其扩展[J]. 清华大学学报(自然科学版), 2002, 42(4):555-559.
[12]李宗利, 任青文, 王亚红. 岩石与混凝土水力劈裂缝内水压分布的计算[J]. 水利学报, 2005, 36(6):656-661.
[13]何 迪, 李宗利. 地震荷载作用下重力坝坝踵裂缝内水压分布研究[J]. 人民长江, 2011, 42(9):72-75.
[14]郑志芳, 李宗利, 孙丽丽. 动力荷载作用下裂缝水力劈裂效应研究[J]. 水利水运工程学报, 2010,(2):45-50.
[15]阳友奎,肖长富,邱贤德,等.水力压裂裂缝形态与缝内压力分布[J]. 重庆大学学报(自然科学版), 1995, 18(3):20-26.
[16]张鸿雁,张志政,王 元,等. 流体力学[M]. 北京: 科学出版社,2014.
[17]徐世烺. 混凝土断裂力学[M]. 北京: 科学出版社,2011.
PDF(3155 KB)

Accesses

Citation

Detail

Sections
Recommended

/