An intelligent underwater robot was developed for crack detection of underwater buildings. The robot has constant temperature control and low energy consumption drive, and has functions of data collection, navigation, and positioning independently in ultra-low temperature deepwater environment. Based on the image data collected by the robot, the original CNN (Convolutional Neural Network) model was improved on the basis of image preprocessing, deep convolution network theory and fracture feature data annotation. Hence, an FPECNN (Feature Pyramid Engagement Convolution Neural Network) model was proposed to extract different types of cracks. The FPECNN model was applied to the crack detection project of Lianhua Hydropower Station. The calculation results demonstrate that the FPECNN model stands at a high level in detection rate, recall rate and F value, reaching 97.26, 98.04 and 96.65, respectively, consuming only 3.12 s. It is also well universal, robust, and viable as it adapts to most crack data, and refrains from low detection rate and low efficiency of conventional CNN model in the detection of underwater buildings. With this intelligent robot, the inspection personnel can be relived from the harsh, heavy and dangerous field work in cold underwater, and the huge economic loss caused by the abandonment of water in traditional inspections can be avoided, and improve the detection efficiency and accuracy.
Key words
intelligent robot /
crack detection /
underwater structures /
feature pyramid engagement convolutional neural network /
detection rate
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 夏坚,周利君,张 伟.基于迁移学习与VGG16深度神经网络的建筑物裂缝检测方法.福建建设科技,2022(1):19-22,60.
[2] 贺欢.基于粘结滑移的衬砌裂缝宽度计算模型研究.长江科学院院报,2022,39(7):149-153.
[3] 史晓东,刘洋.基于特征显著性的地震灾害发生后建筑物裂缝智能检测模型.灾害学,2020,35(4):38-42.
[4] 吕兴栋,李家正.面板堆石坝混凝土面板裂缝现状、成因与防裂技术进展.长江科学院院报,2021,38(11):127-134,141.
[5] 李孟军,郭运冲.基于无人机的建筑物裂缝图像采集与处理系统.科学技术创新,2020(25):92-93.
[6] 许星光.浅谈建筑物裂缝检测与分析判断中应注意的几个问题.广西城镇建设,2003(4):32-34.
[7] 邵 磊,余 挺,迟世春.堆石微裂缝扩展规律及其影响因素.长江科学院院报,2016,33(1):115-120.
[8] 徐刚. 水下机器人在福建水电工程水下建筑物质量检测中的应用. 水利水电快报, 2019, 40(11):4.
[9] 李晓磊.水下电视在水下建筑物故障检测中的应用.水利规划与设计,2014(2):68-69,102.
[10] 李文鹏,李连喜,张增涛.大坝砼面板裂缝处理应用与研究.长江科学院院报,2010,27(9):70-73,82.
[11] 张仕山,孙振海,汪小钦,等.集成DS证据理论和模糊集的建筑物检测方法.遥感信息,2020,35(5):93-105.
[12] 王瑜,赵其华.某电站坝区左岸深部裂缝特征及成因机理浅析.长江科学院院报,2010,27(4):49-52.
[13] 董彪,熊风光,韩 燮,等.基于改进Yolo v3算法的遥感建筑物检测研究.计算机工程与应用,2020,56(18):209-213.
[14] 刘波, 刘露. 一种基于高分辨率SAR图像的城市地区建筑物检测方法. 军民两用技术与产品, 2019(10):47.
[15] 饶锦蒙. 移动增强现实中的建筑物智能检测与注册方法.武汉:武汉大学,2019.