PDF(1677 KB)
Influence of Alkali Content on the Cracking Sensitivity of Cement-based Materials
LI Yang, ZHANG Guo-feng, ZHANG Hui, YIN Hai-bo, FANG He-qi
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (9) : 153-160.
PDF(1677 KB)
PDF(1677 KB)
Influence of Alkali Content on the Cracking Sensitivity of Cement-based Materials
The total alkali content of low-heat Portland cement, medium-heat Portland cement, and ordinary Portland cement was adjusted to 0.8% and 1.2% by adding Na2SO4 and K2SO4 respectively. The impact of alkali on the cracking sensitivity of various cement-based materials was investigated using the elliptical ring method by analyzing drying shrinkage performance, hydration product morphology, micro hardness, and micromechanics of hydration products. Results revealed that an increase in alkali content led to higher cracking sensitivity in various cement-based materials. Low-heat Portland cement exhibited strong crack resistance, and a suitable increase in alkali content could enhance its crack resistance performance. The drying shrinkage performance alone could not fully elucidate how alkali affected the cracking sensitivity of different cement-based materials. The microscopic mechanism behind alkali’s role in enhancing the cracking sensitivity of various cement-based materials included: (1) promoting the transformation of hydration product morphology and elevating micro hardness, thereby reducing the deformation adaptability of cement-based material pastes; (2) decreasing the inter-cluster bonding strength of hydrated calcium silicate (C-S-H), a component with distinct gelling properties, thereby diminishing the crack resistance of cement-based material pastes.
cement-based material / alkali content / cracking properties / shrinkage properties / micro hardness / micromechanics
| [1] |
于方, 唐诗, 邓春林, 等. 温度和湿度对氧化镁膨胀剂膨胀性能的影响[J]. 硅酸盐通报, 2020, 39(10): 3221-3229.
(
|
| [2] |
王铁梦. 工程结构裂缝控制[M]. 北京: 中国建筑工业出版社, 1997.
(
|
| [3] |
程福星, 张珍杰, 周月霞, 等. 水化热调控剂与氧化镁复掺对混凝土抗裂行为的影响[J]. 硅酸盐通报, 2022, 41(12): 4273-4281.
(
|
| [4] |
|
| [5] |
|
| [6] |
理查德· W·伯罗斯. 混凝土的可见与不可见裂缝[M]. 廉慧珍, 覃维祖, 李文伟,译. 北京: 中国水利水电出版社, 2013.
(
|
| [7] |
樊启祥, 李文伟, 李新宇. 低热硅酸盐水泥大坝混凝土施工关键技术研究[J]. 水力发电学报, 2017, 36(4): 11-17.
(
|
| [8] |
|
| [9] |
李洋, 张晖, 蒋科, 等. K2O/Na2O对不同水泥基材料早期收缩及开裂的影响[J]. 长江科学院院报, 2022, 39(9): 124-130.
(
|
| [10] |
李洋, 蒋科, 张振忠, 等. 不同类型盐碱对不同水泥基材料收缩性能的影响[J]. 长江科学院院报, 2022, 39(1): 139-145, 164.
(
|
| [11] |
余睿, 王大勇, 钱雕, 等. 盐碱地区混凝土材料的耐久性评价及对策分析[J]. 防护工程, 2020, 42(3): 71-78.
(
|
| [12] |
余睿, 王楠, 程书凯, 等. 我国典型严酷环境下混凝土材料的耐久性评价及对策分析[J]. 防护工程, 2019, 41(5): 64-74.
(
|
| [13] |
|
| [14] |
王可良, 隋同波, 刘玲, 等. 高贝利特水泥混凝土的抗拉性能[J]. 硅酸盐学报, 2014, 42(11): 1409-1413.
(
|
| [15] |
王可良, 隋同波, 许尚杰, 等. 高贝利特水泥混凝土的断裂韧性[J]. 硅酸盐学报, 2012, 40(8): 1139-1142.
(
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
曹丰泽, 阎培渝. 活性与养护温度对氧化镁膨胀剂膨胀性能的影响[J]. 硅酸盐学报, 2017, 45(8): 1088-1095.
(
|
| [23] |
李洋. 碱对水泥基材料收缩开裂及砂岩石粉活性的影响机制[D]. 武汉: 武汉大学, 2016.
(
|
| [24] |
白春礼, 田芳, 罗克. 扫描力显微术[M]. 北京: 科学出版社, 2000.
(
|
| [25] |
李洋, 蒋科, 黄明辉, 等. Na碱和K碱对低热水泥收缩性能的影响[J]. 长江科学院院报, 2020, 37(3): 125-130.
(
|
| [26] |
陈美祝. 水泥基材料组分对早期水化及收缩开裂影响的研究[D]. 武汉: 武汉大学, 2004.
(
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
/
| 〈 |
|
〉 |