A Visual Quantitative Method for Evaluating the Effectiveness of Grouting Expansive Soil Cracks

ZHOU Xue-you, ZHANG Min, CHANG Zhao-guang, ZHAI Xiao-ping, DING Hao-zhen, WANG Xin-zhi

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (10) : 108-114.

PDF(6964 KB)
PDF(6964 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (10) : 108-114. DOI: 10.11988/ckyyb.20220620
Rock-Soil Engineering

A Visual Quantitative Method for Evaluating the Effectiveness of Grouting Expansive Soil Cracks

  • ZHOU Xue-you1, ZHANG Min1, CHANG Zhao-guang1, ZHAI Xiao-ping1, DING Hao-zhen2,3, WANG Xin-zhi2,3
Author information +
History +

Abstract

Assessing the effectiveness of grouting expansive soil cracks presents a formidable challenge in the field of engineering. In this study, we employed micro-CT scanning technology to quantitatively evaluate the grout filling effect of cracks within expansive soil specimens. Slurries of ultra-fine cement and expansive soil with varied dosage was utilized to grout the cracks. CT scans were conducted before and after grouting to obtain internal slice images, which were then subjected to three-dimensional reconstruction and post-processing analysis. The grouting effect of expansive soil cracks and the minimum width of groutable cracks were quantitatively analyzed using overall porosity, layer-by-layer porosity, pore equivalent diameter, and groutable index. The results illustrated that the groutability of slurry improves with an increase in the water-solid ratio. A water-solid ratio of 1.2 can reduce the overall porosity of expansive soil samples by over 99%, and the minimum crack width for a slurry with an ultra-fine cement content of 50% is 0.6 mm. This method provides a reference for quantitatively evaluating the grouting and filling effects of various slurries in expansive soil cracks.

Key words

expansive soil / CT scan / porosity / grouting materials / crack

Cite this article

Download Citations
ZHOU Xue-you, ZHANG Min, CHANG Zhao-guang, ZHAI Xiao-ping, DING Hao-zhen, WANG Xin-zhi. A Visual Quantitative Method for Evaluating the Effectiveness of Grouting Expansive Soil Cracks[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(10): 108-114 https://doi.org/10.11988/ckyyb.20220620

References

[1] 李生林, 施 斌, 杜延军. 中国膨胀土工程地质研究[J]. 自然杂志, 1997, 19(2): 82-86.
[2] 包承纲. 非饱和土的性状及膨胀土边坡稳定问题[J]. 岩土工程学报, 2004, 26(1):1-15.
[3] 王 也, 王建磊, 鲁 洋, 等. 南阳膨胀土冻融循环后的土水特征试验研究[J]. 长江科学院院报, 2019, 36(2):91-96.
[4] 朱 豪, 王柳江, 刘斯宏, 等. 南阳膨胀土膨胀力特性试验[J]. 南水北调与水利科技, 2011, 9(5):11-14.
[5] 姚海林,郑少河, 葛修润, 等. 裂隙膨胀土边坡稳定性评价[J]. 岩石力学与工程学报, 2002, 21(增刊2):2331-2335.
[6] 程展林, 李青云, 郭熙灵, 等. 膨胀土边坡稳定性研究[J]. 长江科学院院报, 2011, 28(10):102-111.
[7] 袁俊平,殷宗泽,包承纲.膨胀土裂隙的量化手段与度量指标研究[J].长江科学院院报,2003,20(6):27-30.
[8] 黄 斌, 聂 琼, 徐言勇, 等. 膨胀土水泥改性试验研究[J]. 长江科学院院报,2009, 26(11):27-30.
[9] 田世宽, 张海波. 膨胀土地带桥梁病害分析及处治措施[J]. 施工技术, 2014, 43(17): 84-87.
[10] 肖 杰, 王保田, 孙衣春, 等. 水泥石灰复合改良膨胀土试验[J]. 南水北调与水利科技, 2012, 10(2):9-13.
[11] 包承纲. 南水北调中线工程膨胀土渠坡稳定问题及对策[J]. 人民长江, 2003, 34(5):4-6.
[12] 钮新强, 蔡耀军, 谢向荣, 等. 南水北调中线膨胀土边坡变形破坏类型及处理[J]. 人民长江, 2015, 46(3): 1-4, 26.
[13] 黎 伟, 刘观仕, 姚 婷. 膨胀土裂隙图像处理及特征提取方法的改进[J]. 岩土力学, 2014, 35(12):3619-3626.
[14] ESTABRAGH A R, RAFATJO H, JAVADI A A. Treatment of an Expansive Soil by Mechanical and Chemical Techniques[J]. Geosynthetics International, 2014, 21(3): 233-243.
[15] PENGELLY A, BOEHM D, RECTOR E, et al. Engineering Experience with In-situ Modification of Collapsible and Expansive Soils[C]// FREDLUND D G, RAHARDJO H, FREDLUND M D. Unsaturated Soil Mechanics in Engineering Practice, Utah, July 15-19,1997: 277-298.
[16] TANG X Y,LI Y P. Treatment Technology for Embankment Landslide Caused By Expansive Soil Foundation Instability[J].Applied Mechanics and Materials, 2012, 204: 3035-3039.
[17] 唐咸远, 李用鹏. 膨胀土地基失稳引起路堤滑坡的综合处治技术[J]. 公路, 2011, 56(12): 6-10.
[18] 余 梦, 张家铭, 周 杨, 等. MICP技术改性膨胀土试验研究[J]. 长江科学院院报, 2021, 38(5):103-108, 122.
[19] 卢文波, 赖世骧, 朱传云, 等. 三峡工程岩石基础开挖爆破震动控制安全标准[J]. 爆炸与冲击, 2001, 21(1):67-71.
[20] 脱云飞, 王克勤, 张振伟, 等. 斜孔帷幕灌浆在病险水库防渗处理中的应用[J]. 南水北调与水利科技, 2011, 9(1):145-147.
[21] 南 轩, 刘艳慧, 李 靖, 等. 微颗粒通过透水混凝土运动堵塞规律研究[J] 南水北调与水利科技, 2019,17(3) :163-170.
[22] 靳贵晓, 张瑾璇, 许 凯, 等. 颗粒级配对残积土MICP灌浆效果的影响评价[J]. 地下空间与工程学报, 2020, 16(1): 295-302.
[23] 陈利强, 卢建华, 章 赢, 等. 堤坝粗粒土控制灌浆修复加固技术[J]. 水利水电快报, 2021, 42(10):57-62.
[24] 韩增强, 王川婴, 周济芳, 等. 基于钻孔图像的孔壁岩体完整性计算及在裂隙岩体灌浆效果评价中的应用[J]. 岩土工程学报, 2016, 38(增刊2):245-249.
[25] 许 凯, 靳贵晓, 刘子健, 等. 软岩填筑体多层多孔微生物灌浆室内模型试验研究[J]. 工程地质学报, 2020, 28(04): 697-706.
[26] 白 斌, 朱如凯, 吴松涛, 等. 利用多尺度CT成像表征致密砂岩微观孔喉结构[J]. 石油勘探与开发, 2013, 40(3):329-333.
[27] 蒲毅彬, 陈万业, 廖全荣. 陇东黄土湿陷过程的CT结构变化研究[J]. 岩土工程学报, 2000, 22(1): 52-57.
[28] BAI B, ZHU R, WU S, et al. Multi-scale Method of Nano(Micro)-CT Study on Microscopic Pore Structure of Tight Sandstone of Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(3): 354-358.
[29] 程展林, 左永振, 丁红顺. CT技术在岩土试验中的应用研究[J]. 长江科学院院报, 2011, 28(3):33-38.
[30] HUANG Z, ZHANG H, LIU B, et al. Using CT to Test the Damage Characteristics of the Internal Structure of Expansive Soil Induced by Dry-Wet Cycles[J]. AIP Advances,2021,doi: 10.1063/5.0057450.
[31] 陈明祥, 陈义斌. 超细水泥和细水泥灌浆材料的发展现状及应用[J]. 长江科学学院院报, 1999, 16(5): 37-39,56.
PDF(6964 KB)

Accesses

Citation

Detail

Sections
Recommended

/