Research Framework and Prospect for Monitoring and Early Warning of Rainstorm-induced Mountain Torrent Disaster Chain

TANG Wen-jian, FAN Zhong-jie, DONG Lin-yao, LIU Ji-gen, ZHANG Ping-cang, LI Tong-lu, TONG Guan-jun, DU Jun, WANG Lin

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (7) : 73-79.

PDF(7790 KB)
PDF(7790 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (7) : 73-79. DOI: 10.11988/ckyyb.20220469
Water-related Disasters

Research Framework and Prospect for Monitoring and Early Warning of Rainstorm-induced Mountain Torrent Disaster Chain

  • TANG Wen-jian1,2, FAN Zhong-jie2, DONG Lin-yao2, LIU Ji-gen2, ZHANG Ping-cang2, LI Tong-lu3, TONG Guan-jun4, DU Jun2, WANG Lin5
Author information +
History +

Abstract

Rainstorm-induced flash floods and their associated chain disasters pose a common threat in mountainous areas. Their wide distribution, complex causes, and characteristics of abrupt, localized, and hidden occurrence increase the difficulty of disaster identification, monitoring, and prediction in the early stages. At present, research on the transformation mechanism and monitoring and early warning systems of mountain torrent disaster chains is an international frontier and hotspot issue in the field of disaster prevention and mitigation, which demands comprehensive interdisciplinary approaches. To address this challenge, we summarize the status and trends of domestic and foreign research on rainstorm-induced mountain torrent disaster chains, analyze the key scientific and technical issues that require breakthroughs, and proposes corresponding research directions and prospects. Key scientific and technical issues that urgently need to be tackled include: revealing the homologous chain transformation mechanism between rainstorm, flood, landslide (collapse), and debris flow; establishing accurate monitoring and stable transmission technology for disaster chains; and constructing an early warning index system and dynamic warning platform for disaster chains. Proposed research directions are as follows: identifying disaster-causing factors, developing monitoring and early warning technologies for key elements of the disaster chain, building monitoring and early warning platforms for mountainous small watersheds, and integrating and demonstrating monitoring and early warning technologies. Research prospects involve a multidisciplinary and multi-method approach, targeting “disaster-causing factor identification, key technology development, software platform construction, and integrated application demonstration” as the main research thread, and ultimately achieving breakthroughs and innovations in driving and evolving mechanisms of disaster chains, precise monitoring, and dynamic warning technology. The expected results can provide scientific and technological support for improving the defense capability against mountain torrent disaster chains and promoting sustainable ecological development and high-quality development of watersheds.

Key words

rainstorm-induced mountain torrent disaster / transformation mechanism of mountain torrent disaster chain / key disaster-causing factors / critical development condition / monitoring and early warning platform / defense capability against mountain torrent disaster chain

Cite this article

Download Citations
TANG Wen-jian, FAN Zhong-jie, DONG Lin-yao, LIU Ji-gen, ZHANG Ping-cang, LI Tong-lu, TONG Guan-jun, DU Jun, WANG Lin. Research Framework and Prospect for Monitoring and Early Warning of Rainstorm-induced Mountain Torrent Disaster Chain[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(7): 73-79 https://doi.org/10.11988/ckyyb.20220469

References

[1] 张平仓, 赵 健, 胡维忠. 中国山洪灾害防治区划[M]. 武汉: 长江出版社, 2009.
[2] BARREDO J I. Major Flood Disasters in Europe: 1950-2005[J]. Natural Hazards, 2007, 42(1): 125-148.
[3] 尚全民, 涂 勇, 吴泽斌, 等. 2020年典型山洪灾害事件调研与思考[J]. 中国防汛抗旱,2021,31(2):1-4,24.
[4] National Weather Services. Summary of Natural Hazard Statistics in the U.S., NWS Report[R]. Maryland: National Weather Services, 2014.
[5] 罗军华. 暴雨型山洪灾害链风险分析及推理模型构建研究[D]. 重庆: 重庆交通大学, 2020.
[6] CHONG Y, CHEN G, MENG X, et al. Quantitative Analysis of Artificial Dam Failure Effects on Debris Flows - A Case Study of the Zhouqu ‘8.8' Debris Flow in Northwestern China[J]. Science of the Total Environment, 2021, 792: 148439.
[7] 董兴欣, 王 郦, 冯德花. 诱发云南麻栗坡特大山洪泥石流的暴雨成因分析[J]. 气象科技进展, 2021, 11(2): 181-187.
[8] ZHU L, HE S, QIN H, et al. Analyzing the Multi-hazard Chain Induced by a Debris Flow in Xiaojinchuan River, Sichuan, China[J]. Engineering Geology, 2021, 293: 106280.
[9] SATI V P. Glacier Bursts-triggered Debris Flow and Flash Flood in Rishi and Dhauli Ganga Valleys: A Study on Its Causes and Consequences[J]. Natural Hazards Research, 2022, 2(1): 33-40.
[10]王 濂, 王 力, 张革联, 等. 壤中暴雨流机制耦合遥感地表蒸散量在山洪模型中的应用[J]. 水利水电快报, 2021, 42(12): 8-15.
[11]PENG J, FAN Z, WU D, et al. Heavy Rainfall Triggered Loess-Mudstone Landslide and Subsequent Debris Flow in Tianshui, China[J]. Engineering Geology, 2015, 186: 79-90.
[12]王协康, 杨 坡, 孙 桐, 等. 山区小流域暴雨山洪灾害分区预警研究[J]. 工程科学与技术, 2021, 53(1): 29-38.
[13]许文涛, 唐文坚, 王协康, 等. 暴雨山洪监测技术研究进展与发展趋势[J]. 长江科学院院报, 2023, 40(4): 79-87.
[14]吴金津, 董文逊, 张艳军, 等. 多源降雨数据在官山河山洪预报中的应用[J]. 武汉大学学报(工学版), 2021, 54(1): 72-81.
[15]MARINO P, PERES D J, CANCELLIERE A, et al. Soil Moisture Information can Improve Shallow Landslide Forecasting Using the Hydrometeorological Threshold Approach[J]. Landslides, 2020, 17(9): 2041-2054.
[16]魏永强, 刘昌军, 赵伟明. 基于激光雷达数据的小流域暴雨山洪二维数值模拟研究[J]. 北京师范大学学报(自然科学版), 2020, 56(6): 838-845.
[17]李 滨, 冯 振, 赵瑞欣, 等. 三峡地区“14·9”极端暴雨型滑坡泥石流成灾机理分析[J]. 水文地质工程地质, 2016, 43(4): 118-127.
[18]ZHOU W, QIU H, WANG L, et al. Combining Rainfall-induced Shallow Landslides and Subsequent Debris Flows for Hazard Chain Prediction[J]. CATENA, 2022, 213: 106199.
[19]贾珂程,庄建琦,占洁伟,等.基于数值模拟的戈龙布滑坡-堵江-溃决洪水地质灾害链动力学过程重建[J/OL]. 地球科学.(2010-08-30)[2022-04-10].http://kns.cnki.net/kcms/detail/42.1874.P.20210830.1454.018.html
[20]AJAYI A E, VAN DE GIESEN N, VLEK P. A Numerical Model for Simulating Hortonian Overland Flow on Tropical Hillslopes with Vegetation Elements[J]. Hydrological Processes, 2008, 22(8): 1107-1118.
[21]金 鑫, 郝振纯, 张金良. 水文模型研究进展及发展方向[J]. 水土保持研究, 2006, 13(4): 197-199, 202.
[22]张平仓, 董林垚. 变化环境下山洪灾害防治范式研究初探[J]. 中国水利, 2017(13): 1-3.
[23]王 浩, 王全才, 张晓曦, 等. 洪水作用下滑坡稳定性变化[J]. 四川大学学报(工程科学版), 2013, 45(增刊2): 90-95.
[24]崔 鹏. 泥石流起动条件及机理的实验研究[J]. 科学通报, 1991, 36(21): 1650-1652.
[25]王 贺. 沿河公路挡墙山洪冲击特性试验研究[D]. 重庆: 重庆交通大学, 2020.
[26]DAI F, LEE C F, WANG S. Analysis of Rainstorm-induced Slide-Debris Flows on Natural Terrain of Lantau Island, Hong Kong[J]. Engineering Geology, 1999, 51(4): 279-290.
[27]SASSA K. The Mechanism Starting Liquefied Landslides and Debris Flows[C]//Proceedings of the Fourth International Symposium on Landslides. Toronto, Canada, September 16-21, 1984: 349-354.
[28]IVERSON R M, REID M E, LAHUSEN R G. Debris-flow Mobilization from Landslides[J]. Annual Review of Earth and Planetary Sciences, 1997, 25: 85-138.
[29]董林垚, 张平仓, 任洪玉, 等. 山洪灾害监测预警技术研究及发展趋势综述[J]. 人民长江, 2019, 50(8): 35-39, 73.
[30]SEO D,LAKHANKAR T,COSGROVE B,et al. Applying SMOS Soil Moisture Data into the National Weather Service (NWS)'s Research Distributed Hydrologic Model (HL-RDHM) for Flash Flood Guidance Application[J]. Remote Sensing Applications: Society and Environment, 2017, 8: 182-192.
[31]杨 顺, 潘华利, 王 钧, 等. 泥石流监测预警研究现状综述[J].灾害学,2014,29(1):150-156.
[32]DU J, FAN Z J, XU W T, et al. Research Progress of Initial Mechanism on Debris Flow and Related Discrimination Methods: A Review[J]. Frontiers in Earth Science, 2021, 9: 629567.
[33]LÖSCHNER L, NORDBECK R. Switzerland's Transition from Flood Defence to Flood-adapted Land Use-A Policy Coordination Perspective[J]. Land Use Policy, 2020, 95: 103873.
[34]UCHIMURA T, TOWHATA I, WANG L, et al. Precaution and Early Warning of Surface Failure of Slopes Using Tilt Sensors[J]. Soils and Foundations, 2015, 55(5): 1086-1099.
[35]GUO X, LI Y, CUI P, et al. Intermittent Viscous Debris Flow Formation in Jiangjia Gully from the Perspectives of Hydrological Processes and Material Supply[J]. Journal of Hydrology, 2020, 589: 125184.
[36]FENICIA F, PFISTER L, KAVETSKI D, et al. Microwave Links for Rainfall Estimation in an Urban Environment: Insights from an Experimental Setup in Luxembourg-City[J]. Journal of Hydrology, 2012, 464/465: 69-78.
[37]孙东亚, 刘昌军, 何秉顺, 等. 山洪灾害防治理论技术研究进展[J]. 中国防汛抗旱, 2022, 32(1): 24-33.
[38]殷跃平. 全面提升地质灾害防灾减灾科技水平[J]. 中国地质灾害与防治学报, 2018, 29(5): 3.
[39]练继建, 杨伟超, 徐 奎, 等. 山洪灾害预警研究进展与展望[J]. 水力发电学报, 2018, 37(11): 1-14.
[40]李 锐. 基于大数据的山洪灾害预警方法研究[D]. 济南: 山东建筑大学, 2022.
[41]潘佳佳, 曹志先, 王协康, 等. 暴雨山洪水动力学模型及其简化模型的比较研究[J]. 四川大学学报(工程科学版), 2012, 44(增刊1): 77-82.
[42]童官军,丁文峰,施玉松,等.一种基于边缘计算的山洪灾害预警监测系统:中国,CN112738754B[P].2022-06-21.
PDF(7790 KB)

Accesses

Citation

Detail

Sections
Recommended

/