In the light of the ultrasonic technology which has been applied effectively in the petroleum industry, an ultrasonic plugging removal system which is suitable for dike relief well has been independently developed. The process of backward silting of the relief well was simulated in a large laboratory permeameter, and the self-developed ultrasonic equipment was employed to remove the plug. The effect of the proposed ultrasonic technology was studied through permeation test with constant water head, and the influence of sand sample density and driving hydraulic gradient on the effect of ultrasonic technology were also studied. The experimental results revealed that the aquifer was blocked by the reversed filling suspension. The drainage capacity of relief well dropped, and the artesian head rose. After the plugging removal using the self-developed ultrasonic technology, the permeability of the relief well and surrounding aquifer was enhanced, the outlet flow of relief well pipe increased, and the decompression ability was ameliorated. The relief well recovered by over 60% using the present ultrasonic technology. In addition, reducing the density of sand sample raised the porosity of sand sample and boosted the drainage and decompression capacity before silting, but the silting degree could aggravate. The density of sand sample had no significant effect on the degree of ultrasonic plugging removal. However, with small sample density, ultrasonic technology can achieve equal plugging removal effect in a short time. Escalating the driving hydraulic gradient in the process of ultrasonic de-plugging could help upgrade the ultrasonic effect by prompting the exfoliated silt fine particles to precipitate out from the aquifer.
Key words
dike relief well /
backward silting /
ultrasonic /
plug removal system /
penetration test
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 吴昌瑜, 张 伟, 孙厚才. 减压井淤堵机理研究现状[J]. 长江科学院院报, 2005, 22(2): 59-62.
[2] 张家发,张 伟,李思慎.堤防工程减压井淤堵及其应对措施研究[J].长江科学院院报,2006,23(5):24-28.
[3] 吴昌瑜, 张 伟, 李思慎, 等. 减压井机械淤堵机制与防治方法试验研究[J]. 岩土力学, 2009, 30(10): 3180-3187.
[4] 张 伟, 张家发, 孙厚才. 减压井化学淤堵试验研究[J]. 长江科学院院报, 2009, 26(10): 13-16.
[5] 盛小涛, 张 伟, 李少龙, 等. 阳新长江干堤减压井清淤洗井技术研究[J]. 人民长江, 2020, 51(11): 209-213.
[6] 曹 刚. 安庆市长江干堤减压井灌淤成因及处理措施探讨[J]. 人民长江, 1992, 23(7): 28-32.
[7] 孙厚才, 伍碧秀, 王幼麟. 荆江大堤减压井物理化学淤堵试验研究[J]. 水文地质工程地质, 1988(5):15-17,60.
[8] 段祥宝, 杨 超, 谢罗峰. 减压井淤堵机理及井效恢复新技术试验[J]. 水利水电技术, 2011, 42(3):45-48.
[9] 谷潇雨, 蒲春生, 王 蓓, 等. 超声波解堵岩心钻井液堵塞实验研究[J]. 西安石油大学学报( 自然科学版), 2014, 29(1): 76-79.
[10] 孙仁远, 沈本善, 严炽培. 超声波对多孔介质中液体流动的影响[J]. 水动力学研究与进展·A辑, 1997,12(3):277-280.
[11] 张永发,祝济之,胡长华.超声波地层解堵机理研究初步[J].北京理工大学学报,2006,25(5):397-400.
[12] 蒲春生, 石道涵, 赵树山, 等. 大功率超声波近井处理无机垢堵塞技术[J]. 石油勘探与开发, 2011, 38(2): 243-248.
[13] 陈美竹. 超声波解堵增产技术试验评价[J]. 化学工程与装备, 2017(7):176-177.
[14] 缪春晖. 高能超声波在州401区块解堵增产试验研究[J]. 中国石油和化工, 2016(增刊1):230.
[15] 侯 利,徐丽霞,眭纯华,等.声波振荡解堵技术在桩西采油厂的应用[J].内蒙古石油化工,2016(19):119-120.
[16] 代 文, 屈学锋, 唐文峰, 等. 超声波解堵技术在南海HZ26-N油田应用实践[J]. 石油工业技术监督, 2018, 34(5): 1-2.
[17] 马 良. 钻孔超声波洗井技术试验分析[J]. 能源与环保, 2018, 40(11): 105-110.
[18] 王 偲,吕 健,杨甘生. 水文钻孔新型洗井技术简介[J]. 人民长江, 2015, 46(增刊1):103-105.
[19] GB/T 9357—2008,土工试验仪器渗透仪[S]. 北京: 中国标准出版社, 2009.
[20] GB/T 50123—2019,土工试验方法标准[S]. 北京: 中国计划出版社, 2019.