A multi-index and multi-factor orthogonal experiment was carried out to explore the influence of various factors and levels on the germination, growth and root distribution of bermudagrass planted in the surface cement-modified soil of expansive soil slope of the water diversion project from Yangtze River to Huaihe River. The orthogonal experiment was designed with five factors (peat content, water retention agent content, organic fertilizer content, PAM content, and degree of compaction) and four levels. The vegetation restoration effect was comprehensively evaluated by five indexes, namely, plant germination rate, growth height, coverage, root penetration depth, and root content. Results showed that the importance of the factors affecting plant growth was organic fertilizer content, degree of compaction, water retention agent, peat content, and PAM content in descending order. Content of fertilizer and peat has a good promoting effect on plant growth and soil improvement. The higher the soil compaction degree, the worse the plant growth; to ensure better plant growth, the compaction should not exceed 86%. For the expansive soil slopes of the Y003 segment of the water diversion project from Yangtze River to the Huaihe River, the optimal improvement plan for the growth of plant (bermudagrass) is: replacing the original surface expansive soil with cement-modified soil with 9% peat, 0.05% water retention agent, 1.5% organic fertilizer, 0.05%PAM, and compaction degree at 66%. The research finding is of guiding significance for the ecological restoration of cement-modified soil in the area of diversion project from the Yangtze River-to-Huaihe River. The analysis and evaluation methods can also be used as references for the ecological restoration of cement-modified soil in other regions.
Key words
cement modified expansive soil /
bermuda grass /
vegetation restoration /
entropy weight method /
orthogonal test
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 明经平,施赛杰,吴建涛,等.引江济淮河道膨胀土边坡换填层余料工程特性研究[J].岩土工程学报,2018,40(增刊2):147-151.
[2] 李 涛.引江济淮工程江淮分水岭膨胀土治理方案优选[J].江淮水利科技,2018(3):12-14.
[3] 李 伟. 南水北调水泥改性土削坡余料利用碾压试验方案 [J]. 科技创新与应用, 2015(24): 208.
[4] 权 全,陈 恕,张坤勇,等.引江济淮试验工程膨胀土干湿循环强度特性研究[J].治淮,2018(8):25-26.
[5] 孙 慧,刘 军,胡 波,等.水泥改性膨胀土防护边坡效果分析[J].长江科学院院报,2017,34(5):53-57.
[6] 胡 波,龚壁卫,黄 斌.水泥改性膨胀土的非饱和强度试验研究[J].水利与建筑工程学报,2010,8(4):12-15.
[7] 熊海帆.膨胀土水泥改性试验研究[D].武汉:武汉理工大学,2010.
[8] 刘 鸣,刘 军,龚壁卫,等. 水泥改性膨胀土施工工艺关键技术[J]. 长江科学院院报, 2016, 33(1): 89-94,100.
[9] 曹雪山,张荣宽,李国维,等. 引江济淮试验工程膨胀岩膨胀特性试验研究[J]. 河北工程大学学报(自然科学版),2017,34(2): 26-29,49.
[10] 李志萍,何文龙,冯长松,等.膨胀土改良及生态修复技术研究进展[J].华北水利水电大学学报(自然科学版),2014,35(5):38-43.
[11] 张丽娅. 南水北调中线渠道边坡防护的植物适应性研究[D]. 北京:华北水利水电大学, 2019.
[12] 曾 旭,陈芳清,许文年,等. 大型水利水电工程扰动区植被的生态恢复:以向家坝水电工程为例[J]. 长江流域资源与环境,2009(11):1074-1079.
[13] WU Y,SHENG J C,HUANG F.China's Future Investments in Environmental Protection and Control of Manufacturing Industry:Lessons from Developed Countries[J]. Natural Hazards,2015,77(3):1889-1901.
[14] 周爱芳. 基于生态恢复的膨胀土复合改良方法研究[D].武汉:武汉理工大学,2006.
[15] 刘 发,施 斌,江 臣,等.宁淮高速公路膨胀土边坡生态改性护坡技术现场试验研究[J].公路,2009(4):260-264.
[16] 何文龙.南水北调中线新乡潞王坟膨胀土改良及生态修复研究[D].北京:华北水利水电大学,2015.
[17] 黄 效,许松宜,许英姿.南宁市膨胀土边坡黑麦草生长试验初报[J].南方农业,2020,14(11):184-185.
[18] 肖衡林,马 强,叶建军,等.水泥泥炭与纤维基干喷生态护坡基材配方优化及现场试验[J].农业工程学报,2015,31(2):221-227.
[19] 王晓梅,陈建平,周云艳,等.厚层基材植物防护在红色粉砂岩边坡的应用[J].公路交通科技,2010,27(2):152-158.
[20] BENGOUGH A G, MULLINS C E. Mechannical Impedance to Root Growth:a Review of Experimental Techniques and Root Growth Responses[J]. Soil Science, 1990, 41: 341-358.
[21] 章 穗,张 梅,迟国泰.基于熵权法的科学技术评价模型及其实证研究[J].管理学报,2010,7(1):34-42.