Water Quality Evaluation Method Based on Entropy Weight-Partial Order Set

LAI Wen-zhe, MAO Zhi-yong, YUE Li-zhu, TANG Jia-xi

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (3) : 32-38.

PDF(1186 KB)
PDF(1186 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (3) : 32-38. DOI: 10.11988/ckyyb.201915082021
WATER RESOURCES AND ENVIRONMENT

Water Quality Evaluation Method Based on Entropy Weight-Partial Order Set

  • LAI Wen-zhe1, MAO Zhi-yong1, YUE Li-zhu1, TANG Jia-xi2
Author information +
History +

Abstract

Accurate evaluation of the quality of water environment is an important prerequisite for the utilization and protection of water resources. A hybrid model of water quality evaluation is proposed based on entropy weight method and partial order set evaluation to divide evaluation levels and determine evaluation indices according to classification criteria. According to the Hasse diagram obtained from Hasse matrix, the ratings of water quality is acquired by analyzing the hierarchical information presented by the Hasse diagram. The model is used to evaluate the water quality of nine monitoring points in the mainstream of the Yangtze River and Jialing River. Results demonstrate the accuracy of the present model. It is applicable to water quality evaluation as it overcomes the dependence on sample scale in entropy weight method and meanwhile solves the dispute over subjective weighting in conventional evaluation methods.

Key words

water quality assessment / partial order set / entropy weight method / empowerment dispute / Hasse diagram

Cite this article

Download Citations
LAI Wen-zhe, MAO Zhi-yong, YUE Li-zhu, TANG Jia-xi. Water Quality Evaluation Method Based on Entropy Weight-Partial Order Set[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(3): 32-38 https://doi.org/10.11988/ckyyb.201915082021

References

[1] SU S, ZHI J, LOU L, et al. Spatio-temporal Patterns and Source Apportionment of Pollution in Qiantang River (China) Using Neural-based Modeling and Multivariate Statistical Techniques[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2011, 36(9/10/11):379-386.
[2] 黄 玥,黄志霖,肖文发,等.三峡水库蓄水运行后入出库断面水质评价与预测[J].环境污染与防治,2019,41(2):211-215,239.
[3] ZHANG Y, GUO F, WEI M, et al. Water Quality Assessment and Source Identification of Daliao River Basin Using Multivariate Statistical Methods[J]. Environmental Monitoring & Assessment, 2009, 152(1/2/3/4):105.
[4] 李 伟,姚笑颜,梁志伟,等.基于自组织映射与哈斯图方法的地表水水质评价研究[J].环境科学学报,2013,33(3):893-903.
[5] CHANG N B, CHEN H W, NING S K. Identification of River Water Quality Using the Fuzzy Synthetic Evaluation Approach[J]. Journal of Environmental Management, 2001, 63(3):293-305.
[6] 蔡广强,张金松,刘彤宙,等.基于主成分分析的中国南方某市水库水质评价[J].环境科学与技术,2018,41(增刊2):88-94.
[7] 刚什婷,贾 涛,邓英尔,等.基于熵权法的集对分析模型在蛤蟆通流域地下水水质评价中的应用[J].长江科学院院报,2018,35(9):23-27.
[8] 虞未江,贾 超,狄胜同,等.基于综合权重和改进物元可拓评价模型的地下水水质评价[J].吉林大学学报(地球科学版),2019,49(2):539-547.
[9] 彭越兮,徐蔚鸿,陈沅涛,等.改进量子粒子群算法的模糊神经网络水质评价[J].计算机工程与应用,2018,54(11):211-216.
[10] LERCHE D, BRUGGEMANN R, SORENSEN P, et al. A Comparison of Partial Order Technique with Three Methods of Multi-Criteria Analysis for Ranking of Chemical Substances[J]. Journal of Chemical Information and Modeling, 2002, 42(5): 1086-1098.
[11] CARLSEN L, BRUGGEMANN R. Accumulating Partial Order Ranking[J]. Environmental Modelling and Software, 2008, 23(8): 986-993.
[12] BADINGER H, REUTER W H. Measurement of Fiscal Rules: Introducing the Application of Partially Ordered Set (POSET) Theory[J]. Journal of Macroeconomics, 2015, 43: 108-123.
[13] 杜 康.偏序集分拆函数的计算及其算术性质[D].天津:南开大学,2013.
[14] 岳立柱,张志杰,闫 艳.蕴含权重的偏序集多准则决策法[J].运筹与管理,2018,27(2):26-31.
[15] 范 懿.一个有关哈斯图的解析方法[J].上海第二工业大学学报,2003(1):17-22.
[16] 陈 进,刘志明.近年来长江水功能区水质达标情况分析[J].长江科学院院报,2019,36(1):1-6.
[17] 王菲菲,李 琴,王先良,等.我国《地表水环境质量标准》历次修订概要及启示[J].环境与可持续发展,2014,39(1):28-31.
PDF(1186 KB)

Accesses

Citation

Detail

Sections
Recommended

/