Orthogonal Experimental Study on Compression Characteristics of Fluid-solidified Soil Made from Strongly Weathered Rock

ZHU Yan-peng, WANG Hao, FANG Guang-wen, LIU Dong-rui, LÜ Yu-bao

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (12) : 103-109,117.

PDF(1665 KB)
PDF(1665 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (12) : 103-109,117. DOI: 10.11988/ckyyb.20220737
Rock-Soil Engineering

Orthogonal Experimental Study on Compression Characteristics of Fluid-solidified Soil Made from Strongly Weathered Rock

  • ZHU Yan-peng1,2, WANG Hao1,2, FANG Guang-wen3, LIU Dong-rui 1,2, LÜ Yu-bao1,2
Author information +
History +

Abstract

The implementation of the western development strategy has led to a surge in underground engineering projects. To protect ecological environment and reduce engineering costs, crushed strongly weathered rock is utilized in combination with loess, cement, bentonite, and pumping agent to create solidified and improved fluid filling materials. Based on a foundation pit backfilling project in northwest China, compression tests were conducted on fluid-solidified soil with varying proportions using orthogonal design. The optimal proportions of different factors were determined. The influencing factors and their significance on the compressive modulus of fluid-solidified soil made from strongly weathered rock were analyzed. Additionally, the microstructural changes and water stability of fluid-solidified soil were also investigated. Results demonstrate that the pumping agent is the most significant factor affecting the compressive modulus, followed by the dosage of coarse aggregate of strongly weathered rock. The influence of various factors on the compressive modulus can be ranked in the following order from large to small: pumping agent dosage, coarse aggregate content, bentonite dosage, cement dosage, loess dosage, and fine aggregate content. Moreover, the reduction rate of compressive modulus of improved samples decreases with age after being immersed in water. This indicates significant improvements in water stability and overall performance. Microscopic analysis reveals that a pumping agent dosage of 0.4% yields better sample cementation. The research findings hold valuable reference for evaluating the feasibility of using strongly weathered rock as fluid filling material.

Key words

strongly weathered rock / fluid-solidified soil / orthogonal test / compression characteristics / water stability / microstructure / significance analysis

Cite this article

Download Citations
ZHU Yan-peng, WANG Hao, FANG Guang-wen, LIU Dong-rui, LÜ Yu-bao. Orthogonal Experimental Study on Compression Characteristics of Fluid-solidified Soil Made from Strongly Weathered Rock[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(12): 103-109,117 https://doi.org/10.11988/ckyyb.20220737

References

[1] 赵明华,邓觐宇,曹文贵.红砂岩崩解特性及其路堤填筑技术研究[J].中国公路学报,2003,16(3):1-5.
[2] 朱彦鹏, 王 浩, 刘东瑞, 等. 基于正交设计的风化砂岩流态固化土抗剪强度试验研究[J]. 岩土工程学报, 2022, 44(增刊1): 46-51.
[3] NAGANATHAN S, RAZAK H A, HAMID S N A. Properties of Controlled Low-Strength Material Made Using Industrial Waste Incineration Bottom Ash and Quarry Dust[J]. Materials & Design, 2012, 33: 56-63.
[4] ZHEN G, ZHOU H, ZHAO T,et al. Performance Appraisal of Controlled Low-Strength Material Using Sewage Sludge and Refuse Incineration Bottom Ash[J]. Chinese Journal of Chemical Engineering, 2012, 20(1): 80-88.
[5] YAN D Y S,TANG I Y,LO I M C.Development of Controlled Low-Strength Material Derived from Beneficial Reuse of Bottom Ash and Sediment for Green Construction[J].Construction and Building Materials,2014,64:201-207.
[6] MNEINA A, SOLIMAN A M, AHMED A, et al. Engineering Properties of Controlled Low-Strength Materials Containing Treated Oil Sand Waste[J]. Construction and Building Materials, 2018, 159: 277-285.
[7] 王浩宇, 许金余, 王 鹏, 等. 水-动力耦合作用下红砂岩力学性质及能量机制研究[J]. 岩土力学, 2016, 37(10): 2861-2868, 2876.
[8] 郭慧敏. 饱水-风干循环作用下砂岩力学性质劣化规律[J]. 长江科学院院报, 2020, 37(1): 90-94.
[9] 黄 瑞, 张孝斌, 朱彦鹏, 等. 红砂岩浮力折减系数研究[J]. 水利与建筑工程学报,2022,20(2):15-21,26.
[10]李 旭,张鹏超.循环加卸载下黄砂岩力学特性和能量演化规律[J].长江科学院院报,2021,38(4):124-131.
[11]HOU R, ZHANG K, TAO J, et al. A Nonlinear Creep Damage Coupled Model for Rock Considering the Effect of Initial Damage[J]. Rock Mechanics and Rock Engineering, 2019, 52(5): 1275-1285.[12]宋勇军, 陈佳星, 张磊涛, 等. 干湿循环作用下受荷砂岩损伤劣化特性研究[J]. 长江科学院院报, 2021, 38(9): 133-140.
[13]MA C, ZHAN H B, YAO W M, et al. A New Shear Rheological Model for a Soft Interlayer with Varying Water Content[J]. Water Science and Engineering, 2018, 11(2): 131-138.
[14]WANG X, HU B, TANG H, et al. A Constitutive Model of Granite Shear Creep under Moisture[J]. Journal of Earth Science, 2016, 27(4): 677-685.
[15]杜登峰, 林寰宇, 叶雄威, 等. 粉细砂土压缩特性试验研究[J]. 路基工程, 2022(2): 84-88.
[16]张莎莎, 杨晓华, 王明皎, 等. 泥质软岩土石混合料弃渣路用性能研究[J]. 公路交通科技, 2015, 32(2): 55-59.
[17]孟祥连, 赵晓彦, 范智浩, 等. 昆明泥炭质土地铁盾构等代层压缩模量试验研究[J]. 工程地质学报, 2017, 25(6): 1617-1623.
[18]王章琼, 高 云, 沈 雷, 等. 石灰改性红砂岩残积土工程性质试验研究[J]. 工程地质学报, 2018, 26(2): 416-421.
[19]庄心善, 王子翔, 杨文博. 粉煤灰-天然砂改良膨胀土强度特性试验研究[J]. 长江科学院院报, 2019, 36(8): 86-89, 96.
[20]王 涛,刘斯宏,郑守仁,等.掺复合浆液堆石料压缩特性试验研究[J].岩土力学,2019,40(4):1420-1426.
[21]张渭军, 王永胜, 马 滔. 基于正交设计的红层软岩改良土压缩模量试验研究[J]. 地震工程学报, 2022, 44(2): 264-269.
[22]刘文白, 张恩槐. 木质素固化疏浚土的压缩特性研究[J]. 长江科学院院报, 2017, 34(4): 83-86.
[23]庄心善,王俊翔,王 康,等.风化砂改良膨胀土的动力特性研究[J]. 岩土力学,2018,39(增刊2):149-156.
[24]GB/T 50123—2019,土工试验方法标准[S]. 北京: 中国计划出版社, 2019.
[25]LIU J L, MA H Y, LI Q, et al. Study on Optimization of High Performance Concrete Admixtures[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2011, 28(2): 206-210.
[26]CHAI J, NEGAMI T, AIGA K, et al. Effect of Pore Water Chemistry on Anisotropic Behavior of Clayey Soil and Possible Application in Underground Construction[J]. Underground Space, 2016, 1(2): 114-123.
PDF(1665 KB)

Accesses

Citation

Detail

Sections
Recommended

/