The preparation of model materials plays a crucial role in structural model test. To investigate the impact of various factors on the physical and mechanical properties of model materials, we employed orthogonal test to design the material proportions, and obtained the mechanical parameters of the model materials using a triaxial test apparatus. By conducting sensitivity analysis on the physical and mechanical properties of the model materials, we determined the influences of factors such as the aggregate-binder ratio, cement-gypsum ratio, sand-barite powder ratio, refined iron powder amount, and sand particle size. Based on the sensitivity analysis, we obtained a preparation method for hydraulic structure model materials. Taking a cementitious sand gravel (CSG) dam as a prototype, we created a structural model of the CSG dam using the aforementioned material preparation method and conducted failure test on the model using overload method. The obtained failure model, which involves sliding of the dam body along penetrative cracks along the foundation surface, is compared with finite element results. This model better simulates the actual failure of the CSG dam, demonstrating the reliability of our findings: physical and mechanical parameters of model materials are affected by material proportion factors.
Key words
similar materials /
orthogonal test /
triaxial shear test /
sensitivity analysis /
model of cementitious sand gravel dam
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 李庆斌, 马 睿, 胡 昱, 等. 大坝智能建造研究进展与发展趋势[J]. 清华大学学报(自然科学版), 2022, 62(8): 1252-1269.
[2] 王爱玲, 邓正刚. 我国超级高坝的发展与挑战[J]. 水力发电, 2015, 41(2): 45-47, 93.
[3] RAPHAEL J M. The Optimum Gravity Dam[C]∥Proceedings of Conference on Rapid Construction of Concrete Dams. New York: ASCE. Pacific Grove, CA, USA. March 1-5, 1970: 221-244.
[4] RAPHAEL J M. The Soil Cement Dam[M]. Berkeley: University of California Berkeley, 1976.
[5] LONDE P, LINO M. The Faced Symmetrical Hardfill Dam: A New Concept for RCC[J]. International Water Power and Dam Construction, 1992, 44: 19-24.
[6] 贾金生,马锋玲,李新宇,等.胶凝砂砾石坝材料特性研究及工程应用[J].水利学报,2006,37(5):578-582.
[7] 贾金生,Michel Lino,金 峰,等. 胶结颗粒料坝:环境友好的新坝型[J].Engineering,2016,2(4):220-235.
[8] 马芳平, 李仲奎, 罗光福. NIOS模型材料及其在地质力学相似模型试验中的应用[J]. 水力发电学报, 2004, 23(1): 48-51.
[9] 李 光,徐佩华,陈占岺,等.动力学相似材料配比试验研究[J].工程地质学报,2015,23(4):654-659.
[10]刘玉帅. 高混凝土拱坝的模型材料特性研究[D]. 大连: 大连理工大学, 2014.
[11]邓子谦, 张 林, 陈 媛, 等. Hardfill坝与重力坝结构特性对比分析[J]. 四川大学学报(工程科学版), 2014, 46(增刊1): 63-68.
[12]康增云. 武都水利枢纽工程坝与地基整体稳定性研究[D]. 成都: 四川大学, 2006.
[13]陈卫忠, 朱维申, 邱祥波, 等. 小湾水电站拱坝坝肩岩体加固方案分析研究[J]. 岩石力学与工程学报, 2002, 21(3): 374-378.
[14]GB/T 50266—2013,工程岩体试验方法标准 [S]. 北京: 中国计划出版社, 2013.
[15]SL 352—2006,水工混凝土试验规程[S]. 北京: 中国水利水电出版社, 2006.
[16]ZHANG H, HAN P, HE Q, et al. Research on Wetting Deformation Model of Coarse-Grained Materials of Earth-Rock Dam[J]. Arabian Journal of Geosciences, 2022, 15(4): 1-16.
[17]DING Z, XUE J, ZHU X, et al. Optimization of CSG Dam Profile Based on Response Surface Methodology[J]. Case Studies in Construction Materials, 2022, 17: e01430.
[18]熊 堃, 花俊杰, 李 锐. 考虑材料非均匀性的Oyuk坝静动破坏模式分析与安全度评价[J]. 长江科学院院报, 2014, 31(7): 74-80, 90.
[19]李 娜, 张 斌, 何鲜峰, 等. 胶凝堆石料强度和弹性模量随龄期变化规律研究[J]. 长江科学院院报, 2014, 31(4): 85-88, 92.
[20]赖 韩, 王瑞骏, 李 阳, 等. 胶凝砂砾石筑坝材料VC值试验敏感性分析[J]. 长江科学院院报, 2021, 38(3): 142-148.