Numerical Simulation on Effect of Spatial Variability of SoilPermeability on Seepage Stability of Levee Foundation

LI Shao-long, CUI Hao-dong

Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (10) : 49-52.

PDF(1914 KB)
PDF(1914 KB)
Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (10) : 49-52. DOI: 10.11988/ckyyb.20190769
EVOLVEMENT MECHANISM OF DYKE RISKS

Numerical Simulation on Effect of Spatial Variability of SoilPermeability on Seepage Stability of Levee Foundation

  • LI Shao-long, CUI Hao-dong
Author information +
History +

Abstract

The significant spatial variability of soil property is a difficult problem for risk management of levee. On the basis of analyzing the spatial variability of soil permeability, the statistical characteristic of seepage field and seepage stability of levee foundation is studied by stochastic numerical method. Random field model is adopted for soil permeability, and the turning bands method is employed to simulate the permeability random field. The distribution of seepage field and probability of seepage failure are evaluated by Monte-Carlo method. The presented approach is applied to a case study. Results imply that the spatial variability of soil permeability has great impact on seepage field; with the increase of variation of permeability and critical gradient, local seepage is highly concentrated, and seepage failure probability of levee foundation also increases.

Key words

levee seepage / permeability / spatial variability / seepage stability / numerical simulation

Cite this article

Download Citations
LI Shao-long, CUI Hao-dong. Numerical Simulation on Effect of Spatial Variability of SoilPermeability on Seepage Stability of Levee Foundation[J]. Journal of Changjiang River Scientific Research Institute. 2019, 36(10): 49-52 https://doi.org/10.11988/ckyyb.20190769

References

[1] 赵寿刚, 常向前, 潘 恕. 黄河标准化堤防渗流稳定可靠性分析[J]. 岩土工程学报, 2007, 29(5): 684-689.
[2] VANMARCKE E H. Random Fields: Analysis and Synthesis[M]. Cambridge, Massachusetts: The MIT Press, 1984.
[3] GRIFFITHS D V, FENTON G A. Seepage beneath Water Retaining Structures Founded on Spatially Random Soil[J]. Geotechnique, 1993, 43(4): 577-587.
[4] 夏均民, 王 媛. 随机渗流场水头分布影响因素数值分析[J]. 三峡大学学报(自然科学版), 2009, 31(1): 1-5.
[5] 曹敦侣, 曹 罡, 邹火元,等. 水工建筑物渗流管涌的Monte-Carlo模拟[J]. 人民长江, 1997, 28(6): 11-13.
[6] 张任铎. 空间变异理论及应用[M]. 北京: 科学出版社, 2005.
[7] FREEZE R A. A Stochastic Conceptual Analysis of One Dimensional Groundwater Flow in Nonuniform Homogeneous Media[J]. Water Resources Research, 1975, 11(5): 725-741.
[8] SUDICKY E A. A Natural Gradient Experiment on Solute Transport in a Sand Aquifer: Spatial Variability of Hydraulic Conductivity and Its Role in the Dispersion Process[J].Water Resources Research,1986,22(13):2069-2082.
[9] 蔡树英, 杨金忠, 伍靖伟. 土壤渗透参数空间变异性的试验研究[J]. 中国农村水利水电, 2002(11): 13-16.
[10]李少龙, 张家发, 张 伟,等. 表层土渗透系数空间变异与随机模拟研究[J]. 岩土力学, 2009, 30(10): 3168-3172.
[11]黄冠华. 土壤水力特性空间变异的试验研究进展[J]. 水科学进展, 1999, 10(4): 450-457.
[12]杨金忠, 蔡树英, 黄冠华,等. 多孔介质中水分及溶质运移的随机理论[M]. 北京: 科学出版社, 2000.
[13]MANTOGLOU A. Digital Simulation of Multivariate Two and Three Dimensional Stochastic Processes with a Spectral Turning Bands Method[J]. Mathematical Geology, 1987, 19(2): 129-149.
[14]包承纲, 高大钊, 张庆华. 地基工程可靠度分析方法研究[M]. 武汉: 武汉测绘科技大学出版社, 1997.
PDF(1914 KB)

Accesses

Citation

Detail

Sections
Recommended

/