Basic Characteristics and Mechanism of Soil Solidified with Ternary Industrial Waste and Cement

ZHANG Jie-ya, YANG Fan, CAO Jia-wei, DONG Xiao-qiang

Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (6) : 122-129.

PDF(6857 KB)
PDF(6857 KB)
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (6) : 122-129. DOI: 10.11988/ckyyb.20230188
Rock-Soil Engineering

Basic Characteristics and Mechanism of Soil Solidified with Ternary Industrial Waste and Cement

  • ZHANG Jie-ya1,2, YANG Fan1,2, CAO Jia-wei1,2, DONG Xiao-qiang1,2
Author information +
History +

Abstract

In order to reduce cement usage by effectively utilizing the cementitious activity of industrial solid waste, we added three types of industrial waste in combination (red mud, calcium carbide slag, and phosphogypsum) to partially replace cement as curing agent to prepare solidified soil specimens. We designed two proportions (10% and 20%) of total curing admixture, in which the industrial waste combination substituted different amounts (35%, 45%, and 55%) of cement; and in the meantime, we set pure cement-solidified soil as control group. Through tests, we investigated variations in the strength, electrical resistivity, impermeability, and pH value of leachate of the solidified soil specimens with varied mix ratio. Furthermore, we employed the SEM, FTIR, and XRD spectra to unveil the microscopic mechanism of solidifying soil specimens with industrial waste in combination with cement. Findings indicate an optimal substitution rate of industrial waste for cement. When the total curing agent content is 10% or 20% and the industrial waste percentage is below 45%, mechanical properties surpass those of pure cement-solidified soil. However, when industrial waste percentage reaches 55%, mechanical strength falls below that of pure cement solidified soil. Moreover, higher total curing agent content and aging duration lead to increased strength. The non-destructive resistivity testing method accurately predicts strength. The pH value of leachate decreases over time and remains lower than that of pure cement-solidified soil, consistently remaining below the corrosivity threshold at different dosing levels and aging stages. Solidified soil specimens with both industrial waste and cement demonstrates enhanced impermeability compared to the pure cement-solidified ones. Microscopic analyses reveal the formation of hydration products including calcium aluminate, hydrated calcium silicate, and calcium carbonate in the solidified soil. Incorporating ternary industrial waste generates more cementitious materials, resulting in a denser structure.

Key words

ternary industrial waste / cement-solidified soil / microscopic mechanism / curing agent / strength / electrical resistivity / impermeability / pH value of leachate

Cite this article

Download Citations
ZHANG Jie-ya, YANG Fan, CAO Jia-wei, DONG Xiao-qiang. Basic Characteristics and Mechanism of Soil Solidified with Ternary Industrial Waste and Cement[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(6): 122-129 https://doi.org/10.11988/ckyyb.20230188

References

[1] 中华人民共和国生态环境部. 关于“十四五”大宗固体废弃物综合利用的指导意见[EB/OL].(2021-03-05)[2022-10-17]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk10/202103/t20210326_826255.html. (Ministry of Ecology and Environment of the People’s Republic of China. Guiding Opinions on Comprehensive Utilization of Bulk Solid Waste in the ‘14th Five-Year’ Plan[EB/OL]. (2021-03-05) [2022-10-17]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk10/202103/t20210326_826255.html. (in Chinese))
[2] 陈瑞敏,简文彬,张小芳,等.CSFG-FR协同作用改良淤泥固化土性能试验研究[J].岩土力学,2022,43(4):1020-1030.(CHEN Rui-min,JIAN Wen-bin,ZHANG Xiao-fang,et al. Experimental Study on Performance of Sludge Stabilized by CSFG-FR Synergy[J]. Rock and Soil Mechanics,2022,43(4):1020-1030.(in Chinese))
[3] 张豫川, 乔子秦, 高 飞, 等. 工业废渣复合固化黄土强度特性及影响因素研究[J]. 长江科学院院报, 2019, 36(3): 103-109. (ZHANG Yu-chuan, QIAO Zi-qin, GAO Fei, et al. Loess Solidified by Industrial Waste Residue Composite Curing Agent: Strength Performance and Influential Factors[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(3): 103-109.(in Chinese))
[4] 崔勇涛, 刘文白. 固化剂固化疏浚土的渗透性与微观机理研究[J]. 长江科学院院报, 2017, 34(5): 109-114. (CUI Yong-tao, LIU Wen-bai. Permeability and Micro-mechanism of Dredged Mud Solidified with Curing Agent[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(5): 109-114.(in Chinese))
[5] 陈永贵, 朱申怡, 谭邦宏, 等. 电石渣/偏高岭土固化铜污染土淋滤特性试验[J]. 同济大学学报(自然科学版), 2018, 46(2): 182-187. (CHEN Yong-gui, ZHU Shen-yi, TAN Bang-hong, et al. Leaching Characteristic of Solidification/Stabilization for Cu2+ Contaminated Soils with Carbide Slag and Metakaolin[J]. Journal of Tongji University (Natural Science), 2018, 46(2): 182-187.(in Chinese))
[6] 孙兆云, 韦金城, 王 林, 等. 烧结法赤泥-沥青粉固化剂稳定粉土的路用性能研究[J]. 工程科学与技术, 2021, 53(4): 101-109. (SUN Zhao-yun, WEI Jin-cheng, WANG Lin, et al. Study on Road Performance of Stabilized Silt with Sintering Red Mud-asphalt Powder Curing Agent[J]. Advanced Engineering Sciences, 2021, 53(4): 101-109.(in Chinese))
[7] 栗培龙,裴 仪,胡晋川,等.电石渣稳定土抗压强度影响因素及预估模型研究[J].材料导报,2021,35(22):22092-22097.(LI Pei-long,PEI Yi,HU Jin-chuan,et al. Research on Influencing Factors and Prediction Model of Compressive Strength of Carbide Slag Stabilized Soil[J].Materials Reports,2021,35(22):22092-22097.(in Chinese))
[8] 时 松, 刘长武, 吴海宽, 等. 粉煤灰-电石渣双掺改性高水充填材料物理力学性能研究[J]. 材料导报, 2021, 35(7): 7027-7032. (SHI Song, LIU Chang-wu, WU Hai-kuan, et al. Study on Physical and Mechanical Properties of Modified High Water Filling Material with Fly Ash and Calcium Carbide Slag[J]. Materials Reports, 2021, 35(7): 7027-7032.(in Chinese))
[9] LI W, YI Y, PUPPALA A J. Comparing Carbide Sludge-ground Granulated Blastfurnace Slag and Ordinary Portland Cement: Different Findings from Binder Paste and Stabilized Clay Slurry[J]. Construction and Building Materials, 2022, 321: 126382.
[10] 孟维正,蒋关鲁,袁德昭,等.改良磷石膏的路用性能[J].建筑材料学报,2022,25(1):81-88.(MENG Wei-zheng,JIANG Guan-lu,YUAN De-zhao,et al. Road Performance of Modified Phosphogypsum[J]. Journal of Building Materials,2022,25(1):81-88.(in Chinese))
[11] 赵德强, 张昺榴, 朱文尚, 等. 道路基层复合胶凝材料的性能调控[J]. 建筑材料学报, 2020, 23(5): 1137-1143. (ZHAO De-qiang, ZHANG Bing-liu, ZHU Wen-shang, et al. Performance Regulation of Road Base Composite Binder[J]. Journal of Building Materials, 2020, 23(5): 1137-1143.(in Chinese))
[12] BAI Y, GUO W, WANG X, et al. Utilization of Municipal Solid Waste Incineration Fly Ash with Red Mud-carbide Slag for Eco-friendly Geopolymer Preparation[J]. Journal of Cleaner Production, 2022, 340: 130820.
[13] 姜关照, 吴爱祥, 王贻明, 等. 生石灰对半水磷石膏充填胶凝材料性能影响[J]. 硅酸盐学报, 2020, 48(1): 86-93. (JIANG Guan-zhao, WU Ai-xiang, WANG Yi-ming, et al. Effect of Lime on Properties of Filling Cementitious Material Prepared by Hemihydrate Phosphogypsum[J]. Journal of the Chinese Ceramic Society, 2020, 48(1): 86-93.(in Chinese))
[14] JTG E51—2009, 公路工程无机结合料稳定材料试验规程[S]. 北京: 人民交通出版社, 2009. (JTG E51—2009, Test Methods of Materials Stabilized with Inorganic Binders for Highway Engineering[S]. Beijing: China Communications Press, 2009. (in Chinese))
[15] GB 5085.1—2007,危险废物鉴别标准 腐蚀性鉴别[S].北京:中国环境科学出版社,2007.(GB 5085.1—2007, Identification Standards for Hazardous Wastes-Identification for Corrosivity[S]. Beijing: China Environmental Science Press, 2007. (in Chinese))
[16] CJJ/T 286—2018, 土壤固化剂应用技术标准[S]. 北京: 中国建筑工业出版社, 2018. (CJJ/T 286—2018, Technical Standards for Application of Soil Stabilizer [S]. Beijing: China Architecture & Building Press, 2018. (in Chinese))
[17] 索崇娴,曹洪雨,曹家玮,等.赤泥-电石渣-磷石膏固化铜污染土性能[J].环境科学学报,2021,41(11):4686-4693.(SUO Chong-xian,CAO Hong-yu,CAO Jia-wei,et al. Performance of Red Mud-calcium Carbide Residue-phosphogypsum Solidified Copper Contaminated Soil[J]. Acta Scientiae Circumstantiae,2021,41(11):4686-4693.(in Chinese))
[18] 刘娟红,周在波,吴爱祥,等.低浓度拜耳赤泥充填材料制备及水化机理[J].工程科学学报,2020,42(11):1457-1464.(LIU Juan-hong,ZHOU Zai-bo,WU Ai-xiang,et al. Preparation and Hydration Mechanism of Low Concentration Bayer Red Mud Filling Materials[J]. Chinese Journal of Engineering,2020,42(11):1457-1464.(in Chinese))
[19] HOU H, HU D, ZHOU H, et al. A Chemo-mechanical Coupling Model for Concrete Lining Subjected to External Sulfate Attack[J]. European Journal of Environmental and Civil Engineering, 2021, 25(14): 2674-2691.
[20] 刘俊霞,李忠育,张茂亮,等.赤泥地聚物水泥力学性能和聚合机理[J].建筑材料学报,2022,25(2):178-183.(LIU Jun-xia,LI Zhong-yu,ZHANG Mao-liang,et al. Mechanical Property and Polymerization Mechanism of Red Mud Geopolymer Cement[J]. Journal of Building Materials,2022,25(2):178-183.(in Chinese))
[21] 查甫生, 刘晶晶, 许 龙, 等. 水泥-粉煤灰固化/稳定重金属污染土的电阻率特性试验研究[J]. 岩土力学, 2019, 40(12): 4573-4580, 4606. (ZHA Fu-sheng, LIU Jing-jing, XU Long, et al. Electrical Resistivity of Heavy Metal Contaminated Soils Solidified/Stabilized with Cement-fly Ash[J]. Rock and Soil Mechanics, 2019, 40(12): 4573-4580, 4606.(in Chinese))
[22] 吕美彤, 曹智国, 章定文. 基于电阻率法的固化重金属污染土碳化深度评价方法[J]. 中南大学学报(自然科学版), 2021, 52(10): 3571-3580. (LÜ Mei-tong, CAO Zhi-guo, ZHANG Ding-wen. Evaluation Method of Carbonization Depth of Solidified Heavy Metal Contaminated Soil Based on Resistivity Method[J]. Journal of Central South University (Science and Technology), 2021, 52(10): 3571-3580.(in Chinese))
[23] 王赟程,刘志勇,张云升,等.非接触电阻率法在水泥基材料上的应用进展[J].硅酸盐学报,2020,48(4):533-542.(WANG Yun-cheng,LIU Zhi-yong,ZHANG Yun-sheng,et al. Non-contact Electrical Resistivity Measurement for Cementitious Materials—A Short Review[J]. Journal of the Chinese Ceramic Society, 2020,48(4):533-542.(in Chinese))
[24] SUN X, LIU J, QIU J, et al. Alkali Activation of Blast Furnace Slag Using a Carbonate-calcium Carbide Residue Alkaline Mixture to Prepare Cemented Paste Backfill[J]. Construction and Building Materials, 2022, 320: 126234.
[25] 住房和城乡建设部标准定额研究所.土壤固化剂应用技术导则[M].北京:中国建筑工业出版社,2007:1-119.(Research Institute of Standards and Norms Ministry of Housing and Urban-Rural Development. Technical Guidelines for Application of Soil Stabilizer[M].Beijing:China Architecture & Building Press,2007.(in Chinese))
[26] 孙仁娟,方 晨,高发亮,等.基于固弃物的固化土路用性能及固化机理研究[J].中国公路学报,2021,34(10):216-224.(SUN Ren-juan,FANG Chen,GAO Fa-liang,et al. Study on Pavement Performance and Solidified Mechanism of Solidified Soil Based on Solid Waste[J]. China Journal of Highway and Transport,2021,34(10):216-224.(in Chinese))
[27] 李 洋, 王述银, 殷海波, 等. 碱对水泥基材料水化及水化产物的影响研究综述[J]. 长江科学院院报, 2019, 36(1): 127-133. (LI Yang, WANG Shu-yin, YIN Hai-bo, et al. Review on the Influence of Alkali on Hydration and Hydration Products of Cement-based Materials[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(1): 127-133.(in Chinese))
[28] 刘翠英,张津瑞,曾 涛,等.傅里叶变换红外光谱的土壤团聚体有机碳和全氮含量估测[J].光谱学与光谱分析,2020,40(12):3818-3824.(LIU Cui-ying,ZHANG Jin-rui,ZENG Tao,et al.Determination of Soil Organic Carbon and Total Nitrogen Contents in Aggregate Fractions from Fourier Transform Infrared Spectroscopy[J]. Spectroscopy and Spectral Analysis,2020,40(12):3818-3824.(in Chinese))
PDF(6857 KB)

Accesses

Citation

Detail

Sections
Recommended

/