Hydraulic Characteristics at Side Outlet of Tunnel Elbow

GAO Xue-ping, WEI Nan-jiang, LIU Yin-zhu

Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (7) : 94-102.

PDF(7550 KB)
PDF(7550 KB)
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (7) : 94-102. DOI: 10.11988/ckyyb.20230242
Hydraulics

Hydraulic Characteristics at Side Outlet of Tunnel Elbow

  • GAO Xue-ping, WEI Nan-jiang, LIU Yin-zhu
Author information +
History +

Abstract

The turning section of tunnel elbow directly impacts the hydraulic characteristics at the side outlet. Improper design of elbow parameters easily causes flow separation within the side outlet. Numerical simulations on the side outlet connected to tunnel elbow were conducted using the RSM turbulent flow model to investigate the effects of parameters such as the radius (R) of curvatureof the elbow, the length (L) of straight tunnel downstream the bend, and the turning angle (α) on outlet hydraulics and also to examine the flow dynamics within the tunnel. Results demonstrate that increasing the radius (R) and length (L) significantly enhances the outlet’s hydraulic performance. Specifically, when R≥12D (where D is the tunnel diameter) and L≥16D, flow separation inside the side outlet diminishes. The flow velocity distribution across the barrier section becomes uniform, eliminating backflow zones. These findings offer valuable insights for designing side inlets/outlets in pumped storage power plants.

Key words

pumped storage power station / side outlet / tunnel elbow / hydraulic characteristics / numerical simulation

Cite this article

Download Citations
GAO Xue-ping, WEI Nan-jiang, LIU Yin-zhu. Hydraulic Characteristics at Side Outlet of Tunnel Elbow[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(7): 94-102 https://doi.org/10.11988/ckyyb.20230242

References

[1] REHMAN S, AL-HADHRAMI L M, ALAM M M. Pumped Hydro Energy Storage System: a Technological Review[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 586-598.
[2] KONG Y,KONG Z,LIU Z,et al.Pumped Storage Power Stations in China: The Past, the Present, and the Future[J].Renewable and Sustainable Energy Reviews,2017,71:720-731.
[3] 何一纯, 丁秀丽, 吕风英, 等. 大型抽水蓄能电站地下厂房围岩变形时效特征和反馈分析[J]. 长江科学院院报, 2020, 37(11): 172-179, 186. (HE Yi-chun, DING Xiu-li, L Feng-ying, et al. Time Effect of Surrounding Rock Mass Deformation and Feedback Analysis of Underground Powerhouse for Large-scale Pumped Storage Power Station[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(11): 172-179, 186.(in Chinese))
[4] 梅祖彦. 抽水蓄能发电技术[M]. 北京: 机械工业出版社, 2000. (MEI Zu-yan. Pumped Storage Power Generation Technology[M]. Beijing: China Machine Press, 2000.(in Chinese))
[5] 蔡付林,胡 明,张志明.双向水流侧式进出水口分流墩研究[J].河海大学学报(自然科学版),2000,28(2):74-77.(CAI Fu-lin,HU Ming,ZHANG Zhi-ming.Study on Guide Piers in Flank Inlet-outlet with Double Flow Directions[J]. Journal of Hohai University,2000,28(2):74-77.(in Chinese))
[6] 龚成勇,李仁年,何香如,等.TRIZ创新方法剖析抽水蓄能电站进/出水口设计[J].水力发电学报,2020,39(2):16-24.(GONG Cheng-yong,LI Ren-nian,HE Xiang-ru,et al. Analysis on Flow Intake-outlet Design of Pumped Storage Power Station Using TRIZ Innovation Method[J].Journal of Hydroelectric Engineering,2020,39(2):16-24.(in Chinese))
[7] 邱彬如, 刘连希. 抽水蓄能电站工程技术[M]. 北京: 中国电力出版社, 2008. (QIU Bin-ru, LIU Lian-xi. Engineering Technology of Pumped Storage Power Station[M]. Beijing: China Electric Power Press, 2008.(in Chinese))
[8] 张兰丁. 响水涧抽水蓄能电站上、下库进(出)水口分流特性研究[J]. 水利水电科技进展, 2010, 30(6): 48-52. (ZHANG Lan-ding. Flow-dividing Characteristics of Intakes/Outlets in Upper and Lower Reservoirs of Xiangshuijian Pumped Storage Station[J]. Advances in Science and Technology of Water Resources, 2010, 30(6): 48-52.(in Chinese))
[9] 章军军, 毛根海, 程伟平, 等. 抽水蓄能电站侧式短进出水口水力优化研究[J]. 浙江大学学报(工学版), 2008,42(1): 188-192. (ZHANG Jun-jun, MAO Gen-hai, CHENG Wei-ping, et al. Hydraulic Shape Optimization on Lateral Inlet/Outlet of Pump-storage Plant[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(1): 188-192.(in Chinese))
[10]高学平,刘永朋,孙博闻,等.侧式进/出水口扩散出流紊动强度变化规律研究[J].水利水电技术,2020,51(3):91-100.(GAO Xue-ping, LIU Yong-peng, SUN Bo-wen, et al. Study on Variation Law of Turbulence Intensity of Diffused Outflow at Lateral Inlet/Outlet[J]. Water Resources and Hydropower Engineering, 2020, 51(3): 91-100.(in Chinese))
[11]高学平,朱洪涛,孙博闻,等.不对称地形下进/出水口明渠段环流特性研究[J].水力发电学报,2019,38(8):48-60.(GAO Xue-ping, ZHU Hong-tao, SUN Bo-wen, et al. Circulation Characteristics of Inlet/Outlet Open Channel Sections under Asymmetric Terrain[J]. Journal of Hydroelectric Engineering, 2019, 38(8): 48-60.(in Chinese))
[12]高学平,徐天浩,朱洪涛,等.侧式进/出水口及邻近围堰环流消除优化研究[J].水力发电学报,2021,40(8):23-33.(GAO Xue-ping,XU Tian-hao,ZHU Hong-tao,et al.Study of Circulation Elimination and Optimization for Side Inlet/Outlet and Adjacent Cofferdams[J].Journal of Hydroelectric Engineering,2021,40(8):23-33.(in Chinese))
[13]吴永妍,陈永灿,刘昭伟.明渠收缩过渡段流速分布及紊动特性试验[J].水科学进展,2017,28(3):346-355.(WU Yong-yan,CHEN Yong-can,LIU Zhao-wei.Experimental Study on Velocity Profile and Turbulence Characteristics in Open Channel Contractions[J].Advances in Water Science,2017,28(3):346-355.(in Chinese))
[14]孙双科, 柳海涛, 李振中, 等. 抽水蓄能电站侧式进/出水口拦污栅断面的流速分布研究[J]. 水利学报, 2007,38(11): 1329-1335. (SUN Shuang-ke, LIU Hai-tao, LI Zhen-zhong, et al. Study on Velocity Distribution Behind the Trashrack in Lateral Intake/Outlet of Pumped Storage Power Station[J]. Journal of Hydraulic Engineering, 2007, 38(11): 1329-1335.(in Chinese))
[15]张从联,朱红华,钟伟强,等.抽水蓄能电站进出水口水力学试验研究[J].水力发电学报,2005,24(2):60-63.(ZHANG Cong-lian,ZHU Hong-hua,ZHONG Wei-qiang,et al.Experimental Research on Inlet/Outle Hydraulics of Pump Storage Power Plants[J].Journal of Hydroelectric Engineering,2005,24(2):60-63.(in Chinese))
[16]沙海飞, 吴时强, 周 辉. 大型泄洪洞有压弯道水力特性[J]. 水科学进展, 2009, 20(6): 824-829. (SHA Hai-fei, WU Shi-qiang, ZHOU Hui. Flow Characteristics in a Circular-section Bend of High Head Spillway Tunnel[J]. Advances in Water Science, 2009, 20(6): 824-829.(in Chinese))
[17]IKARASHI Y, TAGUCHI S, YAMAGATA T,et al. Mass and Momentum Transfer Characteristics in and Downstream of 90° Elbow[J]. International Journal of Heat and Mass Transfer, 2017, 107: 1085-1093.
[18]IKARASHI Y, UNO T, YAMAGATA T,et al. Influence of Elbow Curvature on Flow and Turbulence Structure through a 90° Elbow[J]. Nuclear Engineering and Design, 2018, 339: 181-193.
[19]高学平,陈 昊,孙博闻,等.侧式进/出水口数值模拟湍流模型比较研究[J].水利水电技术,2020,51(11):109-116.(GAO Xue-ping,CHEN Hao,SUN Bo-wen,et al.Comparative Study on Turbulence Models for Numerical Simulation of Lateral Inlet/Outlet[J]. Water Resources and Hydropower Engineering,2020,51(11):109-116.(in Chinese))
[20]文 雯. 有压隧洞弯曲段洞壁水流作用力分析[J]. 中国水利水电科学研究院学报, 2015, 13(2): 124-127. (WEN Wen. Analysis of Interaction between Water and Wall at Curved Section in Pressure Tunnel[J]. Journal of China Institute of Water Resources and Hydropower Research, 2015, 13(2): 124-127.(in Chinese))
[21]高学平,袁 野,刘殷竹,等.拦污栅结构对进出水口水力特性影响试验研究[J].水力发电学报,2023,42(2):74-86.(GAO Xue-ping,YUAN Ye,LIU Yin-zhu,et al. Experimental Study on Effect of Trash Rack Structure on Hydraulic Characteristics of Inlet and Outlet[J].Journal of Hydroelectric Engineering,2023,42(2):74-86.(in Chinese))
[22]NB/T 10072—2018, 抽水蓄能电站设计规范[S]. 北京: 中国水利水电出版社, 2018. (NB/T 10072—2018, Code for Design of Pumped Storage Power Stations[S]. Beijing: China Water & Power Press, 2018. (in Chinese))
PDF(7550 KB)

Accesses

Citation

Detail

Sections
Recommended

/