Dam Deformation Prediction Using EEMD-PCA-ARIMA Model

ZHENG Xu-dong, CHEN Tian-wei, WANG Lei, DUAN Qing-da, GAN Ruo

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (3) : 57-63.

PDF(2121 KB)
PDF(2121 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (3) : 57-63. DOI: 10.11988/ckyyb.20181146
ENGINEERING SAFETY AND DISASTER PREVENTION

Dam Deformation Prediction Using EEMD-PCA-ARIMA Model

  • ZHENG Xu-dong1,2, CHEN Tian-wei1,2, WANG Lei1,2, DUAN Qing-da1,2, GAN Ruo1,2
Author information +
History +

Abstract

The trend of actual dam deformation curve is easily covered up by noises in dam observation data. In this paper, a prediction method for dam deformation integrating ensemble empirical mode decomposition (EEMD), principal component analysis (PCA) and autoregressive integrated moving average (ARIMA) model is put forward. The mapping matrix is constructed by EEMD and PCA of the observed data, and then the sample matrix constructed by the original data is transformed by the mapping matrix to accomplish denoising; subsequently, the ARIMA model of the processed observation data is built and employed to predict and analyze the observed data of horizontal displacement of dam crest. The prediction result is compared with the measured data, ARIMA predicted data directly removed of high-frequency components, ARIMA predicted data, and BP neural network predicted data. Results suggest that the proposed method is effective for dam deformation prediction as it could better acquire the actual deformation curve.

Key words

dam deformation / deformation prediction / EEMD / PCA / ARIMA

Cite this article

Download Citations
ZHENG Xu-dong, CHEN Tian-wei, WANG Lei, DUAN Qing-da, GAN Ruo. Dam Deformation Prediction Using EEMD-PCA-ARIMA Model[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(3): 57-63 https://doi.org/10.11988/ckyyb.20181146

References

[1] 蒋廷臣, 张 勤, 周 立, 等. 基于小波方法的非线性回归模型研究.测绘学报,2006, 35(4):337-341.
[2] 张建锋, 刘见宝, 崔树军, 等. 小波-神经网络混合模型预测地下水水位.长江科学院院报,2016, 33(8):18-21.
[3] 姜振翔, 徐镇凯, 魏博文. 基于小波分解和支持向量机的大坝位移监控模型.长江科学院院报,2016, 33(1):43-47.
[4] 薛 洋,杨 光,许 雷. 基于Kalman-ARIMA模型的大坝变形预测.中国农村水利水电,2016,15(12): 117-119,123.
[5] 覃劭峰. 基于GM(1,1)-ARIMA最优组合的大坝预测模型.测绘通报,2014,2(增刊2): 66-69.
[6] 王 锋, 苏怀智, 荆 凯. 基于ARIMA-ANN的大坝安全监控模型.武汉大学学报(工学版),2010, 43(5):585-588.
[7] 王金涛, 郭广礼, 郭庆彪,等. 相关性的组合预测模型在开采沉陷中的应用.测绘科学,2017, 42(10):181-185.
[8] 文鸿雁.基于小波理论的变形分析模型研究.武汉:武汉大学,2004.
[9] 杨 庆,任 超. 大坝变形的去噪傅里叶模型预测.测绘科学,2019,44(2):158-163.
[10] 晏红波, 周 斌, 卢献健,等. 基于EEMD-GA-BP模型的大坝变形监测数据预报.长江科学院院报,2019,36(9):58-63.
[11] WU Z H, HUANG N E. Ensemble Empirical Mode Decomposition: A Noise-assisted Data Analysis Method . Advances in Adaptive Data Analysis, 2009, 1(1): 1-4.
[12] 杨永锋, 吴亚锋. 经验模态分解在振动分析中的应用.北京:国防工业出版社,2013.
[13] 刘晓东, 刘朦月, 陈寅生,等. EEMD-PE与M-RVM相结合的轴承故障诊断方法.哈尔滨工业大学学报,2017, 49(9):122-128.
[14] 陈 忠, 符和超. 基于EEMD方法的永磁同步电机电磁噪声诊断.振动与冲击, 2013,32(20):124-128.
[15] 王文波, 张晓东, 汪祥莉. 基于主成分分析的经验模态分解消噪方法.电子学报,2013, 41(7):1425-1430.
[16] 李子奈.计量经济学.北京:高等教育出版社,2004.
[17] 杨 杰, 吴中如. 大坝安全监控的国内外研究现状与发展.西安理工大学学报,2002,18(1):26-30.
[18] 张琦伟, 袁鸿鹄, 王芝银,等. 考虑气象因素影响的大坝监测沉降小波分析.岩土力学,2010,31(3):811-814,826.
PDF(2121 KB)

Accesses

Citation

Detail

Sections
Recommended

/