XGBoost-LSTM Combinatorial Model with Variable Weight for Dam Deformation Prediction and Its Application

DENG Si-yuan, ZHOU Lan-ting, WANG Fei, LIU Zhi-kun

Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (10) : 72-79.

PDF(5973 KB)
PDF(5973 KB)
Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (10) : 72-79. DOI: 10.11988/ckyyb.20210641
ENGINEERING SAFETY AND DISASTER PREVENTION

XGBoost-LSTM Combinatorial Model with Variable Weight for Dam Deformation Prediction and Its Application

  • DENG Si-yuan1, ZHOU Lan-ting1, WANG Fei2, LIU Zhi-kun3,4
Author information +
History +

Abstract

A XGBoost-LSTM combinatorial model with variable weight is proposed to more accurately predict dam deformation. First,the XGBoost (eXtreme Gradient Boosting) model and LSTM (Long Short-Term Memory) model are introduced to analyze and predict the dam deformation respectively,and then the results of the two models are combined by using variable weight combination method to obtain the final prediction result. With a concrete gravity dam as a case study,the advantages of XGBoost and LSTM models in dam deformation prediction are demonstrated respectively through comparison with those of random forest,ELMAN and stepwise regression analysis models;furthermore,the prediction effect of the combinatorial model is verified to have enhanced remarkably compared with each of the single model and the equivalent-weighted XGBoost-LSTM combinatarial model. The deformation prediction results are more consistent with the actual engineering situation,thus is well applicable and popularizable.

Key words

dam / XGBoost / LSTM / variable weight combination / deformation prediction

Cite this article

Download Citations
DENG Si-yuan, ZHOU Lan-ting, WANG Fei, LIU Zhi-kun. XGBoost-LSTM Combinatorial Model with Variable Weight for Dam Deformation Prediction and Its Application[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(10): 72-79 https://doi.org/10.11988/ckyyb.20210641

References

[1] 吴中如.水工建筑物安全监控理论及应用[M].南京:河海大学出版社,2003.
[2] 张永光,王兰锋,吕开云.小浪底水利枢纽大坝变形的灰色预测模型[J].测绘科学,2006(6):80-81.
[3] 周洪波.基于人工神经网络的大坝变形监测正反分析研究[D].武汉:武汉大学,2004.
[4] 任秋兵,沈 扬,李明超,等.水工建筑物安全监控深度分析模型及其优化研究[J].水利学报,2021,52(1):71-80.
[5] 杨 恒,岳建平,周钦坤.利用SVM与ARIMA组合模型进行大坝变形预测[J].测绘通报,2021(4):74-78.
[6] 马佳佳,苏怀智,王颖慧.基于EEMD-LSTM-MLR的大坝变形组合预测模型[J].长江科学院院报,2021,38(5):47-54.
[7] 周兰庭,柳志坤,徐长华.基于WA-LSTM-ARIMA的混凝土坝变形组合预测模型[J].人民黄河,2022,44(1):124-128.
[8] 康俊锋,谭建林,方 雷,等.XGBoost-LSTM变权组合模型支持下短期PM_(2.5)浓度预测:以上海为例[J].中国环境科学,2021,41(9):4016-4025.
[9] 王新民,崔 巍.变权组合预测模型在地下水水位预测中的应用[J].吉林大学学报(地球科学版),2009,39(6):1101-1105.
[10] DIETTERICH T G. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging,Boosting,and Randomization[J]. Machine Learning,2000,40(2):139-157.
[11] QU Xu-dong,YANG Jie,CHANG Meng,et al. A Deep Learning Model for Concrete Dam Deformation Prediction Based on RS-LSTM[J]. Journal of Sensors,Doi: 10.1155/2019/4581672.
[12] CHEN Tian-qi,GUESTRIN C. XGBoost: A Scalable Tree Boosting System[C] //Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM,2006: 785-794.
[13] 邱臣铭,王群京,谢 芳,等.基于XGBoost的电动汽车用异步电机全工况及高精度的电流预测方法研究[J].中国电机工程学报,2020,40(增刊1):313-322.
[14] HOCHREITER S,SCHMIDHUBER J.Long Short-Term Memory[J].Neural Computation,1997,9(8):1735-1780.
[15] 仝晓哲,赵黎晨,王佳明. 随机森林回归在大坝变形预测中的应用研究[C] //江苏省测绘地理信息学会.2019年江苏省测绘地理信息学会学术年会论文集.南京:《现代测绘》编辑部,2019:49-51.doi:10.26914/C.CNKIHY.2019.043498.
[16] 赖道平,顾冲时.Elman回归神经网络在大坝安全监控中的应用[J].河海大学学报(自然科学版),2003(3):255-258.
[17] 姜振翔,徐镇凯,魏博文.基于小波分解和支持向量机的大坝位移监控模型[J].长江科学院院报,2016,33(1):43-47.
[18] 江显群,陈武奋,邵金龙,等.大坝变形预报模型应用[J].排灌机械工程学报,2019,37(10):870-874,920.
[19] 金永强,顾冲时,于 鹏.变权组合预测模型在大坝安全监测中的应用[J].水电自动化与大坝监测,2006(5):60-62.
[20] 刘 明,王红蕾,索良泽.基于变权组合模型的中长期负荷概率密度预测[J].电力系统及其自动化学报,2019,31(7):88-94.
[21] 滕 伟,黄乙珂,吴仕明,等.基于XGBoost与LSTM的风力发电机绕组温度预测[J].中国电力,2021,54(6):95-103.
[22] 杨晨蕾,包腾飞.基于FCM-XGBoost的大坝变形预测模型[J].长江科学院院报,2021,38(8):66-71.
[23] 田菊飞,苏怀智.基于随机森林算法的大坝应力预测模型的构建及其应用[J].水电能源科学,2018,36(5):54-56,61.
[24] 胡安玉,包腾飞,杨晨蕾,等.基于LSTM-ARIMA的大坝变形组合预测模型及其应用[J].长江科学院院报,2020,37(10):64-68,75.
[25] KINGMA D P,BA J. Adam: A Method for Stochastic Optimization[C/OL] //Proceedings of the 3rd International Conference on Learning Representations,ICLR 2015. San Diego,CA,USA,May 7-9,2015.[2021-06-28].http://arxiv.org/abs/1412.6980.
PDF(5973 KB)

Accesses

Citation

Detail

Sections
Recommended

/