Wavelet-based SSA-ELM Spatio-temporal Prediction Model for Dam Deformation

SONG Bao-gang, BAO Teng-fei, XIANG Zhen-yang, WANG Rui-jie

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (8) : 145-151.

PDF(6157 KB)
PDF(6157 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (8) : 145-151. DOI: 10.11988/ckyyb.20220379
Engineering Safety and Disaster Prevention

Wavelet-based SSA-ELM Spatio-temporal Prediction Model for Dam Deformation

  • SONG Bao-gang1,2, BAO Teng-fei1,2,3 , XIANG Zhen-yang1,2, WANG Rui-jie1,2
Author information +
History +

Abstract

A spatio-temporal prediction model for dam deformation is proposed, which incorporates the wavelet theory and the Sparrow Search Algorithm (SSA) to optimize the extreme learning machine (ELM). This model addresses the challenge of accurately describing the overall response characteristics of dam deformation using single measurement point prediction models which fail to account for the spatial relations among measure points. Additionally, it overcomes the limitations of statistical models based on regression analysis, which struggle to uncover the complex nonlinear mapping relationship between environmental variables and the magnitude of deformation, often resulting in poor prediction accuracy. To validate the feasibility of the proposed approach, an actual dam project is taken as an illustrative example. The approach begins with wavelet analysis to eliminate noise from the original displacement measurements of the dam. Subsequently, the influence of coordinate changes in the measurement points on displacement is considered. SSA-ELM is employed to establish non-linear models for independent and dependent variables, constructing a spatio-temporal prediction model for dam deformation based on wavelet analysis. Application of the proposed model to a real-world example demonstrates its ability to accurately predict deformation across non-arranged measuring points. The model exhibits impressive performance indicators, including a highly significant complex correlation coefficient of 0.996 8, a root mean square error of 0.340 4, and an average absolute error of 0.275 4, which exceed those achieved by both the ELM model and statistical model. By integrating both temporal and spatial dimensions, the proposed model achieves high prediction accuracy and holds significant value as a reference for the analysis and evaluation of dam safety.

Key words

dam deformation prediction / wavelet analysis / sparrow search algorithm / extreme learning machine / spatiotemporal distribution model

Cite this article

Download Citations
SONG Bao-gang, BAO Teng-fei, XIANG Zhen-yang, WANG Rui-jie. Wavelet-based SSA-ELM Spatio-temporal Prediction Model for Dam Deformation[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(8): 145-151 https://doi.org/10.11988/ckyyb.20220379

References

[1] 中华人民共和国水利部. 2020年全国水利发展统计公报[M]. 北京: 中国水利水电出版社, 2020: 9.
[2] 顾冲时,苏怀智.混凝土坝工程长效服役与风险评定研究述评[J].水利水电科技进展,2015,35(5):1-12.
[3] 吴中如. 水工建筑物安全监控理论及其应用[M]. 北京: 高等教育出版社, 2003: 74-77.
[4] 黄耀英,何一洋,沈振中,等.大坝监测量最佳统计模型优选方法[J].水利学报,2022,53(2):154-164.
[5] 钱秋培,崔伟杰,包腾飞,等. 基于SVM的混凝土坝变形监控模型预测能力实例分析[J]. 长江科学院院报, 2018, 35(8): 46-50.
[6] 曹恩华, 包腾飞, 胡绍沛, 等. 基于变量筛选优化极限学习机的混凝土坝变形预测模型[J]. 长江科学院院报, 2022, 39(7): 59-65.
[7] 李涧鸣,包腾飞,高瑾瑾,等. 基于小波EGM-ISFLA-SVR的大坝变形组合预测模型[J]. 水利水电技术, 2018, 49(5): 57-62.
[8] LI Y, BAO T, GONG J, et al. The Prediction of Dam Displacement Time Series Using STL, Extra-Trees, and Stacked LSTM Neural Network[J]. IEEE Access, 2020, 8: 94440-94452.
[9] SHU X, BAO T, LI Y, et al. VAE-TALSTM: A Temporal Attention and Variational Autoencoder-Based Long Short-Term Memory Framework for Dam Displacement Prediction[J]. Engineering with Computers, 2022, 38(4): 3497-3512.
[10] 黄 铭, 葛修润, 刘 俊. 大坝安全监测的多测点位移向量模型[J]. 上海交通大学学报, 2001, 35(4): 514-517.
[11] 李端有,周元春,甘孝清. 混凝土拱坝多测点确定性位移监控模型研究[J]. 水利学报, 2011, 42(8): 981-985, 994.
[12] 王 建, 王 甜, 徐文鹏, 等. 利用多测点混合模型对混凝土坝受冻区坝体弹性模量的反演[J]. 长江科学院院报, 2018, 35(7): 136-140.
[13] 王继敏, 顾冲时, 张 晨, 等. 基于面板时空模型的锦屏一级大坝变形性态分析[J]. 水力发电学报, 2020, 39(11): 21-30.
[14] 杨 丽. 小波理论在大坝变形监测数据分析中的应用研究[D]. 西安: 西安理工大学, 2010.
[15] 何杨杨, 苏怀智. 大坝变形的小波-云预测模型[J]. 长江科学院院报, 2020, 37(11): 59-63.
[16] 李 洋, 谢国栋, 官金安. 基于极限学习机的“模拟阅读”脑-机接口异步化研究[J]. 计算机与数字工程, 2018, 46(3): 479-484.
[17] 陈东峰. 基于ICEEMDAN和SSA-ELM的短期风电功率预测研究[D]. 北京:华北电力大学, 2021.
[18] XUE J, SHEN B. A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[19] 薛建凯. 一种新型的群智能优化技术的研究与应用: 麻雀搜索算法[D]. 上海: 东华大学, 2020.
[20] 王首绪,曾 明.基于SSA优化BP神经网络的农村公路造价预测研究[J].工程经济,2021,31(8):25-29.
PDF(6157 KB)

Accesses

Citation

Detail

Sections
Recommended

/