Dam Deformation Prediction Model Based on FCM-XGBoost

YANG Chen-lei, BAO Teng-fei

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (8) : 66-71.

PDF(3909 KB)
PDF(3909 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (8) : 66-71. DOI: 10.11988/ckyyb.20200508
ENGINEERING SAFETY AND DISASTER PREVENTION

Dam Deformation Prediction Model Based on FCM-XGBoost

  • YANG Chen-lei1,2, BAO Teng-fei1,2,3
Author information +
History +

Abstract

Deformation is a crucial indicator to evaluate the safety of dam. With the increase in the number of deformation measuring points, however, prediction often lags because analyzing all the measuring points is time costly. Moreover, despite that traditional machine learning algorithms have ameliorated prediction accuracy, unreasonable selection of parameters has a great impact on prediction results and the process of establishing model is extremely complicated. In view of this, we introduced the fuzzy C-means clustering (FCM) and eXtreme Gradient Boosting algorithm (XGBoost) to partition the deformation measuring points according to the similarity of the change rules, and then established XGBoost prediction model for each partition. Taking the perpendicular line deformation monitoring data of the arch dam as an example, we verified the reliability of the clustering results and compared the XGBoost result with that of random forest prediction model. Result suggest superiority of the XGBoost prediction model in data pretreatment, modeling time, and prediction accuracy.

Key words

dam deformation / prediction accuracy / FCM / XGBoost / partitions of measuring points

Cite this article

Download Citations
YANG Chen-lei, BAO Teng-fei. Dam Deformation Prediction Model Based on FCM-XGBoost[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(8): 66-71 https://doi.org/10.11988/ckyyb.20200508

References

[1] 何政翔. 模糊聚类和偏最小二乘法在大坝监测数据分析中的应用[D]. 杨凌:西北农林科技大学, 2014.
[2] 杨俊闯, 赵 超. K-Means聚类算法研究综述[J]. 计算机工程与应用, 2019,55(23):7-14.
[3] 韦 相. 基于密度的改进BIRCH聚类算法[J]. 计算机工程与应用, 2013,49(10):201-205.
[4] 安计勇, 韩海英, 侯效礼. 一种改进的DBscan聚类算法[J]. 微电子学与计算机, 2015,32(7):68-71.
[5] LI Y, BAO T, GONG J,et al. The Prediction of Dam Displacement Time Series Using STL, Extra-Trees, and Stacked LSTM Neural Network[J]. IEEE Access, 2020, 8: 94440-94452.
[6] 齐银峰, 谭荣建. 基于改进粒子群优化算法的BP神经网络在大坝变形分析中的应用[J]. 水利水电技术, 2017,48(2):118-124.
[7] 李涧鸣, 包腾飞, 高瑾瑾, 等. 基于小波EGM-ISFLA-SVR的大坝变形组合预测模型[J]. 水利水电技术, 2018,49(5):57-62.
[8] 罗 浩, 郭盛勇, 包为民. 拱坝变形监测预报的随机森林模型及应用[J]. 南水北调与水利科技, 2016,14(6):116-121.
[9] CHEN T, GUESTRIN C.XGBoost: A Scalable Tree Boosting System[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA. August 14-19, 2016: 785-794.
[10]沈 豫, 项康利, 黄夏楠, 等. 基于XGBoost算法的短期负荷预测研究[J]. 水利水电技术, 2019,50(增刊1):256-261.
[11]王红爱. 基于XGBoost算法的铁路旅客退票率预测研究[J]. 铁道学报, 2019,41(12):19-25.
[12]陈 悦, 汪程, 尹文中. 基于Kohonen聚类的特高拱坝变形分区[J]. 三峡大学学报(自然科学版), 2019,41(1):1-4.
PDF(3909 KB)

Accesses

Citation

Detail

Sections
Recommended

/