Combinatorial Prediction Model for Dam Deformation Based on EEMD-LSTM-MLR

MA Jia-jia, SU Huai-zhi, WANG Ying-hui

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (5) : 47-54.

PDF(4881 KB)
PDF(4881 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (5) : 47-54. DOI: 10.11988/ckyyb.20200705
ENGINEERING SAFETY AND DISASTER PREVENTION

Combinatorial Prediction Model for Dam Deformation Based on EEMD-LSTM-MLR

  • MA Jia-jia1,2, SU Huai-zhi1,2, WANG Ying-hui1,2
Author information +
History +

Abstract

Under the combined action of water pressure, temperature and aging, dam deformation monitoring data series is non-stationary and nonlinear. We introduced the method of Ensemble Empirical Mode Decomposition (EEMD) to process deformation data and obtained the multi-scale dam deformation components. For the complex high frequency components, we employed the Long and Short Term Memory network (LSTM) to achieve better prediction results; for low frequency components with periodic changes, we adopted Multiple Linear Regression (MLR) for rapid and effective prediction. Through the refactoring of components we can acquire the predicted result of dam deformation. Analysis of engineering examples demonstrated that the EEMD method avoided modal aliasing and attained more reasonable multi-scale deformation components. LSTM and MLR have good predictive ability for high and low frequency components respectively. By comparing the result of components superposition separately with those of a variety of single prediction algorithms, EMD decomposition algorithm, and traditional models, we found that the Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and the Root Mean Square Error (RMSE) of the EEMD-LSTM-MLR combinatorial model were lower than the comparative models above, indicating higher prediction precision.

Key words

dam deformation / combinatorial prediction model / Ensemble Empirical Mode Decomposition / Long and Short Term Memory network / Multiple Linear Regression

Cite this article

Download Citations
MA Jia-jia, SU Huai-zhi, WANG Ying-hui. Combinatorial Prediction Model for Dam Deformation Based on EEMD-LSTM-MLR[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(5): 47-54 https://doi.org/10.11988/ckyyb.20200705

References

[1] SHU Xiao-song, BAO Teng-fei, LI Yang-tao, et al. Dam Safety Evaluation Based on Interval-Valued Intuitionistic Fuzzy Sets and Evidence Theory[J]. Sensors, 2020, 20(9): 2648.
[2] SU Huai-zhi, WEN Zhi-ping, SUN Xiao-ran, et al. Time-varying Identification Model for Dam Behavior Considering Structural Reinforcement[J]. Structural Safety, 2015, 57: 1-7.
[3] 吴中如.混凝土坝安全监控的确定性模型及混合模型[J].水利学报,1989(5) : 64-70。
[4] 罗亦泳,张 豪,张立亭. 基于遗传支持向量机的多维灰色变形预测模型研究[J]. 浙江工业大学学报,2010,38(1):79-83.
[5] 曹茂森,邱秀梅,夏 宁. 大坝安全诊断的混沌优化神经网络模型[J]. 岩土力学,2006(8):1344-1348.
[6] 苏怀智,温志萍,吴中如. 基于SVM理论的大坝安全预警模型研究[J]. 应用基础与工程科学学报,2009,17(1):40-48.
[7] 罗德河,郑东健. 大坝变形的小波分析与ARMA 预测模型[J]. 水利水运工程学报,2016(3) : 70-75.
[8] SU Huai-zhi, LI Xing, YANG Bei-bei, et al. Wavelet Support Vector Machine-based Prediction Model of Dam Deformation[J]. Mechanical Systems and Signal Processing, 2018, 110: 412-427.
[9] 曹恩华,包腾飞,刘永涛,等. 基于EMD-RVM-ARIMA的大坝变形预测模型及其应用[J]. 水利水电技术,2018,49(12):59-64.
[10] 吴 俊,张榆锋. 经验模态分解和小波分解滤波特性的比较研究[J]. 云南大学学报(自然科学版),2012,34(3):285-290,297.
[11] HUANG N E, SHEN Z, LONG S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis[J]. Proceedings Mathematical Physical & Engineering Sciences, 1998, 454(1971): 903-995.
[12] 郑旭东,陈天伟,王 雷,等. 基于EEMD-PCA-ARIMA模型的大坝变形预测[J]. 长江科学院院报,2020,37(3):57-63.
[13] MA Xiao-lei, TAO Zhi-min, WANG Yin-hai, et al. Longshort-term Memory Neural Network for Traffic Speed Prediction Using Remote Microwave Sensor Data[J]. Transportation Research Part C Emerging Technologies, 2015, 54: 187-197.
[14] LI Yang-tao, BAO Teng-fei, GONG Jian, et al. The Prediction of Dam Displacement Time Series Using STL, Extra-Trees, and Stacked LSTM Neural Network[J]. IEEE Access, 2020, 8: 94440-94452.
[15] 李 瑞,姜新元,秦 涛,等. 多元线性回归在大坝变形监测数据处理中的应用[J]. 黄河水利职业技术学院学报,2017,29(1):17-54.
[16] 邓带雨,李 坚,张真源,等. 基于EEMD-GRU-MLR的短期电力负荷预测[J]. 电网技术,2020,44(2):593-602.
[17] 张 豪,许四法. 基于经验模态分解和遗传支持向量机的多尺度大坝变形预测[J]. 岩石力学与工程学报,2011,30(增刊2):3681-3688.
[18] PASCUAL S, BONAFONTE A. Multi-output RNN-LSTM for Multiple Speaker Speech Synthesis with α-interpolation Model[C]//Proceedings of the 9th ISCA Speech Synthesis Workshop. Sunnyvale, CA: International Speech Communication Association (ISCA). September 13-15, 2016: 112-117.
PDF(4881 KB)

Accesses

Citation

Detail

Sections
Recommended

/