Water Environment Assessment Model and Driving Factors Identification for Xiangjiang River Basin

CAO Yan-min, AN Hong-lei, HAN Shuai

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (10) : 51-58.

PDF(7952 KB)
PDF(7952 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (10) : 51-58. DOI: 10.11988/ckyyb.20221496
Water Environment and Water Ecology

Water Environment Assessment Model and Driving Factors Identification for Xiangjiang River Basin

  • CAO Yan-min1, AN Hong-lei2, HAN Shuai3
Author information +
History +

Abstract

Watershed involves a wide range of complexities in its water environment issues. Water environment assessment and driving force analysis are crucial aspects of watershed research. In this study, an assessment model, the WQImin, for the water environment in the Xiangjiang River Basin is established by combining cluster analysis and principal component analysis (PCA) based on measured water quality indicators from 77 monitoring stations. The socio-economic driving factors of the basin are also analyzed using the Pearson linear correlation method. Results indicate that the WQImin values in the Xiangjiang River Basin range from 95.2 to 70.0, with an overall rating of excellent-good. The water environment in non-flood season is superior to that in flood season. Areas such as Yongzhou and Xiaoshui exhibit the best water quality, while the Changsha-Zhuzhou-Xiangtan cluster and the city of Hengyang demonstrate poorer conditions. The main pollution factors include dissolved oxygen (DO), biochemical oxygen demand (BOD5), chemical oxygen demand (CODMn), hexavalent chromium (Cr6+), and ammonia nitrogen (NH3-N). Furthermore, the WQImin values progressively decrease from upstream to downstream along the main stream, with the lowest value recorded in the Xiangtan area at 78.65, while the value in Changsha increases to 81.6. The driving factors impacting the water environment vary across different areas. Industrial pollution, agricultural pollution, and population factors influence the water environment in Changsha-Zhuzhou-Xiangtan region and Hengyang, whereas agricultural pollution affects Yongzhou, and industrial pollution influences Loudi and Chenzhou. The primary driving factors for the mainstream of Xiangjiang River include industrial pollution, agricultural pollution, and urban pollution in upstream cities.

Key words

water environment assessment / driving factors / WQImin model / principal component analysis / Xiangjiang River Basin

Cite this article

Download Citations
CAO Yan-min, AN Hong-lei, HAN Shuai. Water Environment Assessment Model and Driving Factors Identification for Xiangjiang River Basin[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(10): 51-58 https://doi.org/10.11988/ckyyb.20221496

References

[1] WANG H. Theory of Annual Runoff Evolution Under Natural-Artificial Dual Mode and Case Study of Wuding River Basin on the Middle Yellow River[J]. Science in China Series E,2004,47(8): 51.
[2] 胡 芳,黄慧敏,刘 桢,等. 湘江综合枢纽工程蓄水后湘江长沙段鱼类重金属残留分析与评价[J]. 矿冶工程,2020,40(4): 114-119.
[3] 陈明霞,熊贵耀,张佳鹏,等. 湘江流域水质综合评价及其时空演变分析[J]. 环境工程,2019,37(10): 83-90,104.
[4] 陈咏淑,吴甫成,吕焕哲,等. 近20年来湘江水质变化分析[J]. 长江流域资源与环境,2004,13(5): 508-512.
[5] 周召梅,李 强. 湖南省入河废污水对江河水质的影响分析[J]. 水资源保护,2003,19(3): 44-46,62.
[6] 刘叶叶. 湘江流域水质特征及水生态补偿标准研究[D]. 长沙: 湖南师范大学,2020.
[7] 刘叶叶,毛德华,杨家亮,等. 1990—2016年湘江干流水质变化特征及影响因素分析[J]. 冰川冻土,2018,40(4): 820-827.
[8] 王敦球,武 力,刘慧莹,等. 湘江永州流域水质时空规律及污染源解析[J]. 桂林理工大学学报,2021,41(1): 165-173.
[9] 刘叶叶,毛德华,杨家亮,等. 湘江流域水质特征及水污染经济损失估算[J]. 中国环境科学,2019,39(4): 1471-1477.
[10] 曹艳敏,毛德华,吴 昊,等. 湘江干流水环境质量演变特征及其关键因素定量识别[J]. 长江流域资源与环境,2019,28(5): 1235-1243.
[11] 徐祖信. 我国河流综合水质标识指数评价方法研究[J]. 同济大学学报(自然科学版),2005,33(4): 482-488.
[12] 程卫国,李亚斌,苏 燕,等. 不同赋权方法的综合水质标识指数法对比分析[J]. 灌溉排水学报,2019,38(11): 93-99.
[13] 唐 琦,刘 兵,王 璞,等. 改进WQI在川中丘陵地区典型流域水质评价中的应用: 以琼江流域上游段为例[J]. 环境工程技术学报,2022,12(2): 615-623.
[14] KANNEL P R,LEE S,LEE Y-S,et al. Application of Water Quality Indices and Dissolved Oxygen as Indicators for River Water Classification and Urban Impact Assessment[J]. Environmental Monitoring and Assessment,2007,132(1): 93-110.
[15] DE ALMEIDA G S,DE OLIVEIRA I B. Application of the Index WQI-CCME with Data Aggregation Per Monitoring Campaign and Per Section of the River:Case Study—Joanes River,Brazil[J]. Environmental Monitoring and Assessment,2018,190(4): 195.
[16] NONG X,SHAO D,ZHONG H,et al. Evaluation of Water Quality in the South-to-North Water Diversion Project of China Using the Water Quality Index (WQI) Method[J]. Water Research,2020,178: 115781.
[17] CHOI B,CHOI S S. Integrated Hydraulic Modelling,Water Quality Modelling and Habitat Assessment for Sustainable Water Management: A Case Study of the Anyang-Cheon Stream,Korea[J]. Sustainability,2021,13(8): 4330.
[18] 胡莹莹,王义成,周毓彦,等. 基于综合水质指数的白洋淀流域水质评价[J]. 水利水电技术(中英文),2022,53(3): 145-154.
[19] HU Y Y,WANG Y C,ZHOU Y Y,et al. Water Quality Assessment of Baiyangdian Watershed based on a Comprehensive Water Quality Index[J].Water Conservancy and Hydropower Technology (Chinese and English),2022,53(3):145-154.
[20] 杨 列,闫霄珂,刘艳丽,等. 基于WQImin模型的武汉市金银湖水质时空特性[J]. 长江科学院院报,2022,39(4): 49-55,62.
[21] 湖南省水利水电勘测设计研究总院. 湘江流域综合规划[R].长沙:湖南省水利水电勘测设计研究总院,2015.
[22] 朱 琳,王雅南,韩 美,等. 武水河水质时空分布特征及污染成因的解析[J]. 环境科学学报,2018,38(6): 2150-2156.
[23] 吴寿盛. 流域视角下湖南产业与水污染集聚的时空演变与管控策略[D]. 长沙: 湖南大学,2021.
[24] 覃一枝. 湘江流域畜禽养殖企业环境成本评估[D]. 长沙: 湖南农业大学,2018.
[25] 刘俊宇. 湘江流域人类干扰强度变化对生态系统服务的影响及阈值研究[D]. 长沙: 湖南师范大学,2021.
[26] JONNALAGADDA S B,MHERE G. Water Quality of the Odzi River in the Eastern Highlands of Zimbabwe[J]. Water Research,2001,35(10): 2371-2376.
PDF(7952 KB)

Accesses

Citation

Detail

Sections
Recommended

/