Selecting Temperature Factor for Deformation Prediction Model for Super-high Arch Dams During Initial Operation

HU Jiang, WANG Chun-hong, MA Fu-heng

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (1) : 59-65.

PDF(2417 KB)
PDF(2417 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (1) : 59-65. DOI: 10.11988/ckyyb.20191153
ENGINEERING SAFETY AND DISASTER PREVENTION

Selecting Temperature Factor for Deformation Prediction Model for Super-high Arch Dams During Initial Operation

  • HU Jiang1, WANG Chun-hong2, MA Fu-heng1
Author information +
History +

Abstract

The water temperature in front of super-high arch dam gradually stratifies vertically in the initial operation period, resulting in the rebound of internal temperature of the dam concrete. Periodic terms of temperature effect used in conventional deformation prediction models could not well describe the nonlinearity and nonstationarity of environmental and internal temperatures of dam during its initial operation. In view of this, a method of classifying measured ambient and dam temperatures and selecting typical measurement points is presented by integrating principal component analysis and hierarchical clustering. Meanwhile,a combination of time varying effects, including both index term and cycle term,that reflects the valley deformation under the periodic fluctuation of reservoir water level during the initial operation is introduced. On this basis,a multivariate regression model and a support vector machine model based on measured temperature variable are constructed. Case study demonstrates that the selected measured temperature variable well reflects the spatio-temporal characteristics of dam temperature field during initial operation, and the corresponding constructed model is of higher prediction accuracy than traditional models.

Key words

super-high arch dam / initial operation period / deformation / temperature factor / prediction model / principal component analysis / clustering / support vector machine

Cite this article

Download Citations
HU Jiang, WANG Chun-hong, MA Fu-heng. Selecting Temperature Factor for Deformation Prediction Model for Super-high Arch Dams During Initial Operation[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(1): 59-65 https://doi.org/10.11988/ckyyb.20191153

References

[1]WANG Ren-kun. Key Technologies in the Design and Construction of 300 m Ultra-high Arch Dams[J]. Engineering, 2016, 2(3):350-359.
[2] 相建方. 边界条件对高拱坝真实工作性态的影响研究[D]. 北京:中国水利水电科学研究院, 2017.[3] 张国新, 陈培培, 周秋景. 特高拱坝真实温度荷载及对大坝工作性态的影响[J]. 水利学报, 2014, 45(2):127-134.
[4] 张 冲, 王仁坤, 汤雪娟. 溪洛渡特高拱坝蓄水初期工作状态评价[J]. 水利学报, 2016, 47(1):85-93.
[5] 魏 浪, 安瑞冬, 常 理, 等. 水库坝前水温结构日变化规律研究[J]. 四川大学学报(工程科学版), 2016, 48(4):25-3.
[6] 谢奇珂, 陈永灿, 刘昭伟, 等. 溪洛渡水库蓄水初期水温模拟[J]. 环境影响评价, 2016(3):39-44.
[7] 龙良红, 徐 慧, 鲍正风, 等. 溪洛渡水库水温时空特性研究[J]. 水力发电学报, 2018, 37(4):79-89.
[8] LIANG G, HU Y, LI Q. Safety Monitoring of High Arch Dams in Initial Operation Period Using Vector Error Correction Model[J]. Rock Mechanics and Rock Engineering, 2018, 51(8):2469-2481.
[9] HU Jiang, WU Su-hua. Statistical Modeling for Deformation Analysis of Concrete Arch Dams with Influential Horizontal Cracks[J]. Structural Health Monitoring, 2019, 18(2):546-562.
[10]MATA J, CASTRO A T, COSTA J S. Constructing Statistical Models for Arch Dam Deformation[J]. Structural Control & Health Monitoring, 2014, 21(3):423-437.
[11]钱秋培, 崔伟杰, 包腾飞, 等. 基于SVM的混凝土坝变形监控模型预测能力实例分析[J]. 长江科学院院报, 2018, 35(8):50-54.
[12]牛广利, 李端有, 李天旸, 等. 基于云平台的大坝安全监测数据管理及分析系统研发与应用[J]. 长江科学院院报, 2019, 36(6):161-165.
[13]HU Jiang, MA Fu-heng. Zoned Safety Monitoring Model for Uplift Pressures of Concrete Dams[J]. Transactions of the Institute of Measurement and Control, 2019, 41(14): 3952-3969.
[14]ABDI H,WILLIAMS LJ.Principal Component Analysis[J].WIREs Computational Statistics,2010,2(4):433-459.
[15]JOLLIFFE I T, CADIMA J. Principal Component Analysis: A Review and Recent Developments[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 374(2065): 20150202.
[16]MURTAGH F, LEGENDRE P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? [J]. Journal of Classification, 2014, 31(3): 274-295.
[17]JUNG Y, PARK H, DU D Z, et al. A Decision Criterion for the Optimal Number of Clusters in Hierarchical Clustering[J]. Journal of Global Optimization, 2003, 25(1): 91-111.
[18]顾冲时, 吴中如. 大坝与坝基安全监控理论和方法及其应用[M]. 南京:河海大学出版社, 2006.
[19]SALAZAR F,TOLEDO M A,ONATE E,et al. An Empirical Comparison of Machine Learning Techniques for Dam Behaviour Modelling[J].Structural Safety,2015,56:9-17.
PDF(2417 KB)

Accesses

Citation

Detail

Sections
Recommended

/