Vegetation Net Primary Productivity in Dabie Mountains in Recent Two Decades: Spatiotemporal Variation and Driving Factors

ZHU Peng-fan, LIU Gang, HE Jing, DAI Tang-rui

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (10) : 66-73.

PDF(7633 KB)
PDF(7633 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (10) : 66-73. DOI: 10.11988/ckyyb.20220832
Soil and Water Conservation and Ecological Restoration

Vegetation Net Primary Productivity in Dabie Mountains in Recent Two Decades: Spatiotemporal Variation and Driving Factors

  • ZHU Peng-fan1, LIU Gang1,2, HE Jing1, DAI Tang-rui1
Author information +
History +

Abstract

Being of former communist revolutionary base of China, the Dabie Mountains area emphasizes green development while promoting continuous economic growth. Ecological environment plays a vital role. In this study we focus on the net primary productivity (NPP) of vegetation and utilize the improved CASA (Carnegie-Ames-Stanford Approach) model to evaluate the NPP in the Dabie Mountains by integrating remote sensing and meteorological data from 2000 to 2018. We also analyzed the changing trends in vegetation NPP and its response to climate change. The findings reveal that 1) since 2000, the overall NPP in the Dabie Mountains has mainly ranged from 400 to 600 gC/(m2·a), experiencing a gradual 24.16% increase; 2) The NPP in the Dabie Mountains exhibits a correlation with meteorological factors, with temperature demonstrating the highest correlation (R2=0.79, p<0.05), followed by solar radiation (R2=0.70, p<0.05), while precipitation shows the lowest correlation (R2=0.51, p<0.05); 3) Land use/cover change (LUCC) has contributed to a total NPP increase of 6.23×10-2 TgC, primarily due to the conversion from cultivated land to forests; 4) The future changing trend of NPP in the research area is expected to continue increasing.

Key words

vegetation / NPP / CASA model / temporal and spatial changes / driving factors / Dabie Mountains

Cite this article

Download Citations
ZHU Peng-fan, LIU Gang, HE Jing, DAI Tang-rui. Vegetation Net Primary Productivity in Dabie Mountains in Recent Two Decades: Spatiotemporal Variation and Driving Factors[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(10): 66-73 https://doi.org/10.11988/ckyyb.20220832

References

[1] 巢清尘, 张永香, 高 翔, 等. 巴黎协定: 全球气候治理的新起点[J]. 气候变化研究进展, 2016, 12(1): 61-67.
[2] LIETH H, WHITTAKER R H. Primary productivity of the biosphere[M]. New York:Springer-Verlag,1975.
[3] 戴尔阜, 黄 宇, 吴 卓, 等. 内蒙古草地生态系统碳源/汇时空格局及其与气候因子的关系[J]. 地理学报, 2016, 71(1): 21-34.
[4] 刘洋洋, 王 倩, 杨 悦, 等. 黄土高原草地净初级生产力时空动态及其影响因素[J]. 应用生态学报, 2019, 30(7): 2309-2319.
[5] YUAN Z, WANG Y, XU J, et al. Effects of Climatic Factors on the Net Primary Productivity in the Source Region of Yangtze River, China[J]. Scientific Reports, 2021, 11: 1376.
[6] 贾俊鹤, 刘会玉, 林振山. 中国西北地区植被NPP多时间尺度变化及其对气候变化的响应[J]. 生态学报, 2019, 39(14): 5058-5069.
[7] 刘 亮, 关靖云, 穆 晨, 等. 2008—2018年伊犁河流域植被净初级生产力时空分异特征[J]. 生态学报, 2022, 42(12): 4861-4871.
[8] 贺 倩, 杨雪琴, 戴晓爱. 2010—2015年三江源地区植被净初级生产力变化特征及影响因素分析[J]. 长江科学院院报, 2020, 37(5): 59-66.
[9] 张振宇, 钟瑞森, 李小玉, 等. 中国西北地区NPP变化及其对干旱的响应分析[J]. 环境科学研究, 2019, 32(3): 431-439.
[10] 马炳鑫, 靖娟利, 徐 勇, 等. 2000—2019年滇黔桂岩溶区植被NPP时空变化及与气候变化的关系研究[J]. 生态环境学报, 2021, 30(12): 2285-2293.
[11] PIAO S, CUI M, CHEN A, et al. Altitude and Temperature Dependence of Change in the Spring Vegetation Green-up Date from 1982 to 2006 in the Qinghai-Xizang Plateau[J]. Agricultural and Forest Meteorology, 2011, 151(12): 1599-1608.
[12] WANG Q, ZENG J, LENG S, et al. The Effects of Air Temperature and Precipitation on the Net Primary Productivity in China during the Early 21st Century[J]. Frontiers of Earth Science, 2018, 12(4): 818-833.
[13] 中国发展门户网.大别山片区区域发展与扶贫攻坚规划(2011-2020年)[EB/OL]. (2013-09-17)[2022-03-03]. 
[14] 倪 婷, 黄 勇, 凌新锋, 等. 大别山区地形降水特征分析[J]. 气象科技, 2018, 46(3): 556-562.
[15] 徐新良.中国月度植被指数(NDVI)空间分布数据集[DB/OL]. 资源环境科学数据注册与出版系统. (2018-06-06)[2022-03-04].
[16] FRIEDL M, SULLA-MENASHE D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006[R]. NASA EOSDIS Land Processes DAAC, 2015. doi: 10.5067/MODIS/MCD12Q1.006.
[17] TANG W, YANG K, QIN J, et al. A 16-Year Dataset (2000-2015) of High-resolution Global Surface Solar Radiation[J]. Earth System Science Data, 2019, 11(4): 1905-1915.
[18] 易桂花, 张廷斌, 何奕萱, 等. 四种气温空间插值方法适用性分析[J]. 成都理工大学学报(自然科学版), 2020, 47(1): 115-128.
[19] 朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007, 31(3): 413-424.
[20] FIELD C B, RANDERSON J T, MALMSTRM C M. Global Net Primary Production: Combining Ecology and Remote Sensing[J]. Remote Sensing of Environment, 1995, 51(1): 74-88.
[21] FRIEND A D, STEVENS A K, KNOX R G, et al. A Process-Based, Terrestrial Biosphere Model of Ecosystem Dynamics (Hybrid V3.0)[J]. Ecological Modelling, 1997, 95(2/3): 249-287.
[22] SELLERS P J, MEESON B W, HALL F G, et al. Remote Sensing of the Land Surface for Studies of Global Change: Models-Algorithms-Experiments[J]. Remote Sensing of Environment, 1995, 51(1): 3-26.
[23] 曹 博,张 勃,马 彬,等.2000—2014年甘肃省NDVI时空变化特征[J].中国沙漠,2018,38(2):418-427.
[24] 金 凯, 王 飞, 韩剑桥, 等. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5): 961-974.
[25] 李金珂, 杨玉婷, 张会茹, 等. 秦巴山区近15年植被NPP时空演变特征及自然与人为因子解析[J]. 生态学报, 2019, 39(22): 8504-8515.
[26] 史雯雨, 杨胜勇, 李增永, 等. 近57年金沙江流域气温变化特征及未来趋势预估[J]. 水土保持研究, 2021, 28(1): 211-217.
[27] 陈鹏飞. 北纬18°以北中国陆地生态系统逐月净初级生产力1公里栅格数据集(1985—2015)[J]. 全球变化数据学报(中英文), 2019, 3(1): 34-41, 143.
[28] 秦景秀, 郝兴明, 张 颖, 等. 气候变化和人类活动对干旱区植被生产力的影响[J]. 干旱区地理, 2020, 43(1): 117-125.
[29] 郭 豪, 袁金国, 王景芝, 等. 基于MOD17A3的京津冀地区植被净初级生产力时空演变[J]. 长江科学院院报, 2023, 40(7): 66-72, 103.
[30] 姜 春, 吴志峰, 程 炯, 等. 广东省土地覆盖变化对植被净初级生产力的影响分析[J]. 自然资源学报, 2016, 31(6): 961-972.
[31] 陈晓杰, 张长城, 张金亭, 等. 基于CASA模型的植被净初级生产力时空演变格局及其影响因素: 以湖北省为例[J]. 水土保持研究, 2022, 29(3): 253-261.
PDF(7633 KB)

Accesses

Citation

Detail

Sections
Recommended

/