The total deformation of concrete dam can be attributed to the deformation caused by water pressure, temperature and time, among which the deformations caused by water pressure and temperature are reflected as periodic components, while the aging deformation as trend component. In this paper, a combinatorial deformation prediction model for concrete dam is established by integrating wavelet decomposition, Even Grey Model (EGM), Periodic Extension (PE), and Autoregressive Integrated Moving Average (ARIMA) model. Wavelet is employed to decompose the trend items and periodic items in the time series of dam deformation; EGM for the effective prediction of trend term, and PE model for periodic term; ARIMA model is adopted for the prediction of residuals of EGM and PE model. An engineering case study verifies the effectiveness of the present model. The results show that the time series of dam deformation can be fitted and predicted effectively by this combined model, in which the variation law of each deformation component of the dam is considered. The fitting accuracy and prediction accuracy of the combined model are both superior to those of traditional statistical model.
Key words
concrete dam /
deformation prediction /
wavelet analysis /
EGM(1,1) /
periodic extension model /
ARIMA
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 吴中如. 水工建筑物安全监控理论及其应用. 北京:高等教育出版社,2003.
[2] 陈久宇. 应用实测位移资料研究刘家峡重力坝横缝的结构作用. 水利学报,1982(12):12-20.
[3] 吴中如. 混凝土坝观测物理量的数学模型及应用. 华东水利学院学报,1984(3):20-25.
[4] 吴中如. 混凝土坝安全监控的确定性模型及混合模型. 水利学报,1989(5):64-70.
[5]
[6] 吴中如,刘观标. 混凝土坝的位移确定性模型研究. 大坝观测与土工测试,1987(1):16-25.
[7] 吴中如. 混凝土坝安全监控的确定性模型及混合模型. 水利学报, 1989(5):64-70.
[8] 顾冲时,吴中如,蔡 新. 探讨空间变形场的正反分析模型. 工程力学,1997,14(2):138-143.
[9] 顾冲时,吴中如. 大坝与坝基安全监控理论和方法及其应用. 南京:河海大学出版社,2006.
[10] 罗德河,郑东健. 大坝变形的小波分析与ARMA预测模型. 水利水运工程学报,2016(3):70-75.
[11] 俞艳玲,郑东健,俞 扬,等. 改进的非等间距灰色模型在大坝位移预测中的应用. 长江科学院院报, 2017,34(3):50-52,57.
[12] 万 臣,李建峰,赵 勇,等. 基于新维BP神经网络-马尔科夫链模型的大坝沉降预测. 长江科学院院报,2015,32(10):23-27,32.
[13] 李涧鸣,包腾飞,高瑾瑾,等. 基于小波EGM-ISFLA-SVR的大坝变形组合预测模型. 水利水电技术,2018,49(5):57-62.
[14] 唐晓初. 小波分析与应用. 重庆:重庆大学出版社,2006.
[15] 徐洪钟,吴中如,李雪红,等. 基于小波分析的大坝变形观测数据的趋势性分量提取. 武汉大学学报(工学版),2003,36(6):5-8.
[16] MALLAT S. Zero-crossing of a Wavelet Transform. IEEE Transactions on Information Theory, 2003, 37(4): 1019-1033.
[17] MALLAT S, SETPHANE G. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
[18] 徐 伟,何金平. 基于多尺度小波分析的大坝变形自回归预测模型. 武汉大学学报(工学版),2015,45(3):285-289.
[19] 刘思峰,曾 波,刘解放,等. GM(1,1)模型的几种基本形式及其适用范围研究. 系统工程与电子技术,2014,36(3):501-508.
[20] 刘思峰,谢乃明. 灰色系统理论及其应用. 北京:科学出版社,2013.
[21] 迟道才,李 雪,张兰芬,等. 灰色-周期外延组合模型在参考作物腾发量预测中的应用. 节水灌溉,2012(12):30-36.
[22] 屠立峰,包腾飞,唐 琪,等. 基于PSO-RVM-ARIMA的大坝变形预警模型. 中国农村水利水电,2015(6):112-115.