Centrifugal Model Test on Deformation Mechanism of Reservoir Bank Landslide under Reservoir Water Level Fluctuation

GU Jian-yong, ZHANG Qiang, LU Xiao-chun, HU Jing, ZHU Jun-wei

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (6) : 166-172.

PDF(2995 KB)
PDF(2995 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (6) : 166-172. DOI: 10.11988/ckyyb.20220009
Engineering Safety and Disaster Prevention

Centrifugal Model Test on Deformation Mechanism of Reservoir Bank Landslide under Reservoir Water Level Fluctuation

  • GU Jian-yong1, ZHANG Qiang1,2, LU Xiao-chun1, HU Jing2, ZHU Jun-wei1
Author information +
History +

Abstract

To investigate the deformation and evolution mechanism of landslides under changing reservoir water levels, a 1∶70 scale model of the Cheyiping landslide was established, and a reservoir water level rising and falling system was designed. Centrifugal model tests were conducted with one water level rise and two consecutive water level plummets at different rates. The findings reveal that during the water level rising stage, the landslide deformation is not significant. However, during the initial water level drop, tension cracks in the front edge of the landslide develop rapidly and form a fracture zone. Subsequently, the fault zone collapses and tension cracks appear in the middle and rear part of the landslide. During the second water level drop, the landslide continues to slide along the original fracture zone, but the sliding noticeably attenuates. The vertical compaction in the middle and rear parts of the landslide leads to the stabilization of fracture propagation. During the water level rising stage, the pore pressure exhibits noticeable lag and gradually diminishes in subsequent stages. The soil pressure in the leading edge of the sliding mass varies significantly in each stage, while in the middle and rear changes most severely during the first rapid water level drop. Overall, the water level drop rates that lead to landslide instability range from 0.7 to 1.5 m/day. The dynamic water pressure effect is stronger in the deeper parts of the landslide compared to that in the shallower layers. The deformation of the landslide is more influenced by the initial water level plummet than the second. The deformation and failure gradually decrease from the front to the rear, resembling traction characteristics.The water level rising, the first plummeting and the second plummeting stages demonstrate initial deformation, accelerated deformation, and decelerated deformation characteristics, respectively.

Key words

reservoir bank landslide / hydrodynamic pressure / deformation / plummeting water level / centrifugal model test

Cite this article

Download Citations
GU Jian-yong, ZHANG Qiang, LU Xiao-chun, HU Jing, ZHU Jun-wei. Centrifugal Model Test on Deformation Mechanism of Reservoir Bank Landslide under Reservoir Water Level Fluctuation[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(6): 166-172 https://doi.org/10.11988/ckyyb.20220009

References

[1] 许 强, 李为乐, 董秀军, 等. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J]. 岩石力学与工程学报, 2017, 36(11): 2612-2628.
[2] FAN X, XU Q, SCARINGI G, et al. Failure Mechanism and Kinematics of the Deadly June 24th 2017 Xinmo Landslide, Maoxian, Sichuan, China[J]. Landslides, 2017, 14(6): 2129-2146.
[3] 黄海峰, 李会中, 叶圣生, 等. 西南大型水库库岸滑坡灾害三维地理信息系统研究[J]. 长江科学院院报, 2014, 31(9):115-120.
[4] 马文瀚. 湖南省地质灾害孕灾机理及综合防治研究[D]. 长沙: 中南大学, 2012.
[5] 李 媛, 孟 晖, 董 颖, 等. 中国地质灾害类型及其特征: 基于全国县市地质灾害调查成果分析[J]. 中国地质灾害与防治学报, 2004, 15(2):29-34.
[6] 谢家龙, 李远耀, 王宁涛, 等. 考虑库水位及降雨联合作用的云阳县区域滑坡危险性评价[J]. 长江科学院院报, 2021, 38(12):72-81, 90.
[7] 高华晨. 滑坡灾害风险分析及其防治研究: 以巴东县例[D]. 武汉: 湖北工业大学, 2020.
[8] 熊十力. 基于岩性因子的滑坡易发性评价研究[D]. 武汉: 湖北工业大学, 2020.
[9] LUMB P B. Effect of Rain Storms on Slope Stability[M]. Hong Kong: Local Property & Printing Co., Ltd., 1962.
[10]NG C W W, SHI Q. A Numerical Investigation of the Stability of Unsaturated Soil Slopes Subjected to Transient Seepage[J]. Computers and Geotechnics, 1998, 22(1): 1-28.
[11]王思敬,黄鼎成. 中国工程地质世纪成就[M]. 北京:地质出版社,2004:1-21.
[12]南京水利科学研究院土工研究所. 土工试验技术手册[M]. 北京:人民交通出版社,2003:315-370.
[13]李邵军, KNAPPETT J A, 冯夏庭. 库水位升降条件下边坡失稳离心模型试验研究[J]. 岩石力学与工程学报, 2008, 27(8): 1586-1593.
[14]冯文凯, 易小宇, 孟 睿, 等. 三峡库区木鱼包滑坡不同库水升降速率变形响应离心模型试验研究[J]. 水利学报, 2021, 52(5): 578-588.
[15]牟太平, 张 嘎, 张建民. 土坡破坏过程的离心模型试验研究[J]. 清华大学学报(自然科学版), 2006, 46(9):1522-1525.
[16]付小林,汤明高,叶润青,等. 不同库水消落方式下动水压力型滑坡变形与稳定性响应研究[J]. 水利水电技术(中英文),2021,52(1):201-211.
[17]李松林, 汤明高, 许 强, 等. 库水位上升条件下浮托减重型滑坡离心模型试验[J]. 东北大学学报(自然科学版), 2020, 41(5):616-622, 634.
[18]苗发盛,吴益平,谢媛华,等.水位升降条件下牵引式滑坡离心模型试验[J].岩土力学,2018,39(2):605-613.
[19]汤明高, 李松林, 许 强, 等. 基于离心模型试验的库岸滑坡变形特征研究[J]. 岩土力学, 2020, 41(3): 755-764.
PDF(2995 KB)

Accesses

Citation

Detail

Sections
Recommended

/