Defining the damage evolution characteristics of rocks under load is the key to analyze the damage mechanism of rocks. In this paper, a strain-related deformation intrinsic model of sandstone was developed by introducing a strain-related macro-modulus mathematical model. On the basis of the damage mechanics theory, the sandstone damage evolution law was analyzed by using the established intrinsic structure model. Moreover, uniaxial/triaxial compression tests were performed on rocks under different loading rates and surrounding pressure conditions using a rock triaxial loading system to systematically verify the rationality of the sandstone damage evolution model. The initial damage ω0, loading damage ωf and total damage ωt of sandstone were obtained. Results demonstrate that loading rate has a small effect on the evolution of the three types of damage when loading rate is varied in the range of 0.0-0.5 mm/min. When surrounding pressure changes in the range of 0-10 MPa, the initial damage and total damage of the sandstone keep decreasing with the increase of surrounding pressure, while loading damage remains almost constant. The loading damage, as the rock damage threshold, is less influenced by loading rate and surrounding pressure and fluctuates within a certain range, which indicates that the crack expansion within the rock is the causative factor of damage. Finally, a method for estimating the in-situ modulus of rocks is proposed by combining the intrinsic model and damage theory presented in this paper, providing theoretical references for related projects.
Key words
initial damage /
strain dependence /
deformation constitutive model /
damage evolution /
uniaxial and triaxial compression test /
rock in-situ model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] KRAJCINOVIC D, SILVA M A G. Statistical Aspects of the Continuous Damage Theory[J]. International Journal of Solids and Structures, 1982, 18(7): 551-562.
[2] ZHOU S W, XIA C C, ZHAO H B, et al. Statistical Damage Constitutive Model for Rocks Subjected to Cyclic Stress and Cyclic Temperature[J]. Acta Geophysica, 2017, 65(5): 893-906.
[3] 苏艳军. 考虑时效损伤的岩石分数阶蠕变本构模型[J]. 长江科学院院报, 2022, 39(3): 92-97, 103.
[4] 宋勇军, 陈佳星, 张磊涛, 等. 干湿循环作用下受荷砂岩损伤劣化特性研究[J]. 长江科学院院报, 2021, 38(9): 133-140.
[5] WEN T, LIU Y, YANG C, et al. A Rock Damage Constitutive Model and Damage Energy Dissipation Rate Analysis for Characterising the Crack Closure Effect[J]. Geomechanics and Geoengineering, 2018, 13(1): 54-63.
[6] 潘继良, 郭奇峰, 田莉梅, 等. 基于统一强度理论的岩石统计损伤软化本构模型及其参数研究[J]. 矿业研究与开发, 2019, 39(8): 38-42.
[7] 王 伟, 田振元, 朱其志, 等. 考虑孔隙水压力的岩石统计损伤本构模型研究[J]. 岩石力学与工程学报, 2015, 34(增刊2): 3676-3682.
[8] XIE S, LIN H, WANG Y, et al. A Statistical Damage Constitutive Model Considering Whole Joint Shear Deformation[J]. International Journal of Damage Mechanics, 2020, 29(6): 988-1008.
[9] 李海潮, 张 升. 基于修正Lemaitre应变等价性假设的岩石损伤模型[J]. 岩土力学, 2017, 38(5): 1321-1326, 1334.
[10] 刘冬桥, 王 焯, 张晓云. 岩石应变软化变形特性及损伤本构模型研究[J]. 岩土力学, 2017, 38(10): 2901-2908.
[11] 任建喜, 葛修润, 蒲毅彬, 等. 岩石单轴细观损伤演化特性的CT实时分析[J]. 土木工程学报, 2000, 33(6): 99-104.
[12] 张利洁, 朱杰兵, 骆建宇, 等. 岩石初始损伤及其对单轴抗压强度的影响研究[J]. 长江科学院院报, 2014, 31(11): 22-25, 37.
[13] 陈乐求, 张家生, 陈俊桦, 等. 初始损伤对脆性岩石抗压力学性质的影响[J]. 中南大学学报(自然科学版), 2017, 48(2): 484-490.
[14] 李克钢, 秦庆词, 杨宝威, 等. 考虑初始宏细观缺陷的裂隙岩体损伤本构模型研究[J]. 中国安全生产科学技术, 2018, 14(12): 90-96.
[15] 肖桃李, 李新平, 郭运华. 三轴压缩条件下单裂隙岩石的破坏特性研究[J]. 岩土力学, 2012, 33(11): 3251-3256.
[16] TONG L H,YU Y,LAI S K,et al.Dynamic Weakening of Sandstone Subjected to Repetitive Impact Loading[J].Rock Mechanics and Rock Engineering,2019,52(7):2197-2206.
[17] 张慧梅, 陈 敏, 覃祥瑞. 考虑节理初始损伤的岩体本构模型[J]. 矿业研究与开发, 2021, 41(10): 73-78.