Xi'an rail transit project is built in the loess area of China. The subway parking line interval is featured with shallow buried depth,small clear distance and asymmetric distribution of sections. To avoid excessive disturbance between the left and right lines during excavation,we need to determine a reasonable stagger distance of the working face. We took the parking line interval of Xi'an Metro Line 8 project as the research background,and dynamically simulated the excavation under different schemes by using FLAC3D finite difference software. By comparing the simulation results with the actual monitoring data,we verified the correctness of the simulation. We found that the final deformation and stress of surrounding rock was hardly affected by different schemes,but the deformation rate and the extreme value in the process need to be controlled. The longitudinal influence range of tunnel face on excavated soil reached about 3 times the span. When the offset of tunnel face is 2-3 times the span,the deformation rate of surrounding rock can be effectively controlled. When the offset of tunnel is large,the maximum shear stress of surrounding rock increased significantly during excavation,and meanwhile leading to large relative displacement difference between the middle soil column,unfavorable to the stability of surrounding rock. In conclusion,we suggest to reduce the offset of the working face to 30 m to ensure construction safety and improve construction efficiency.
Key words
tunnel engineering /
reasonable offset /
numerical simulation /
stability of surrounding rock /
small clear distance /
asymmetrical cross-section
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 李东明.厦门地铁隧道变形控制指标的确定方法[J].长江科学院院报,2020,37(4):90-95.
[2] 蔡鉴明,张 森,吴强运,等. 交通强国视野下轨道交通可持续发展相关思考[J].交通世界(中旬刊),2020(3):3-6,10.
[3] SUN Jun. Design Theory and Practice of Underground Engineering[M]. Shanghai: Shanghai Scientific & Technical Publishers,1996.
[4] 舒忠磊. 小净距隧道松动圈计算方法及空间效应研究[D]. 泉州:华侨大学,2018.
[5] 王梦恕. 隧道工程浅埋暗挖法施工要点[J]. 隧道建设,2006,26(5):1-4.
[6] 杨忠民,高永涛,吴顺川,等. 节理岩体中纵向间距对连拱隧道稳定性的影响[J]. 中国公路学报,2018,31(10):167-176.
[7] 赵 阳,徐东强. 不同掌子面间距下浅埋偏压小净距隧道稳定性研究[J]. 河北工业大学学报,2021,50(1):81-91.
[8] 覃 达. 黄土分岔隧道开挖效应模型试验研究[D]. 南京:东南大学,2018.
[9] 胡志平,刘佳琪,任 翔,等. 黄土地区浅埋暗挖地铁连拱隧道合理错距研究[J]. 铁道工程学报,2020,37(9):60-65.
[10] 高一杰,张子新. 软土小间距浅埋暗挖后建隧道滞后距离分析[J]. 地下空间与工程学报,2015,11(增刊2):780-784,816.
[11] 赵亚龙,任 刚,孔 君,等. 小净距隧道合理滞后距离的确定[J]. 水利与建筑工程学报,2019,17(1):215-220.
[12] 王春玲. 小净距隧道三维动态施工分析[J]. 筑路机械与施工机械化,2017(6):71-76.
[13] 何 巍. 小净距隧道围岩稳定性及中夹层力学行为研究[D]. 武汉:武汉理工大学,2007.
[14] 田国宾. 小净距隧道施工方法的研究[D]. 西安:西安科技大学,2009.
[15] 刘希亮,孙飞跃. 基于数值模拟的隧道施工方案比选[J]. 土木工程与管理学报,2018,35(3):1-6,14.
[16] 孔祥兴,夏才初,仇玉良,等. 平行小净距盾构与CRD法黄土地铁隧道施工力学研究[J]. 岩土力学,2011,32(2):516-524.
[17] 邓广繁,李宏哲,孔祥兴. 平行小净距黄土隧道施工力学分析[J]. 中外公路,2014,34(4):236-241.
[18] 黄竹纯. 黄土地区小净距地铁隧道施工动态分析及二次衬砌优化研究[D]. 西安:西安建筑科技大学,2017.
[19] 王 童. 黄土地区浅埋大跨小净距隧道施工优化及变形控制研究[D].西安:西安建筑科技大学,2017.
[20] 高 强,于文龙. 黄土地区某地铁区间隧道设计难点分析与探讨[J]. 水利与建筑工程学报,2018,16(3):212-217.
[21] 张 浩. 乌鲁木齐二号线小净距非对称截面地铁隧道施工技术研究[D]. 重庆:重庆大学,2019.
[22] 陶振东. 黄土地区非对称小间距及偏连拱隧道施工力学理论研究[D]. 成都:西南交通大学,2010.