Effectiveness and Mechanism of Improving Strength of Red Clay by Microorganism

WANG Lian-rui, CHEN Jun, YANG Heng, HUANG Yang, HUANG Yang

Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (5) : 125-131.

PDF(2340 KB)
PDF(2340 KB)
Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (5) : 125-131. DOI: 10.11988/ckyyb.20210142
ROCK SOIL ENGINEERING

Effectiveness and Mechanism of Improving Strength of Red Clay by Microorganism

  • WANG Lian-rui1, CHEN Jun2, YANG Heng3, HUANG Yang1, HUANG Yang1
Author information +
History +

Abstract

Strengthening red clay with microorganisms is an innovative, environmental friendly and economical method. We prepared two kinds of microorganism-strengthened soil samples according to the optimum curing condition by selecting bacillus pasteurii and iron bacteria to strengthen soil with activated carbon as carrier. Tests on the basic physical and mechanical properties of microbe soil samples unveiled that the density, shear strength and unconfined compressive strength of microbe soil samples increased whilst porosity decreased, indicating that microorganisms remarkably promoted the physical and mechanical properties of red clay. In order to further study the solidification mechanism, we examined the microstructure and material composition of the samples via scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS). We found that bacillus pasteurii induced the formation of calcium carbonate to fill the pores of soil and form the cemented and solidified soil. Calcium carbonate is mostly concentrated in the vicinity of activated carbon and presents a massive structure; iron bacteria produce iron-based compound to fill the soil pores, and the iron-based compound is mostly lamellar or layered structure. In short, the curing effect of bacillus pasteurii for red clay is better than that of iron bacteria. The research finding is of vital reference value for understanding the mechanism of microbial reinforcement of red clay and the selection of bacterial species.

Key words

red clay / microbial curing / physical and mechanical properties / microstructure / action mechanism

Cite this article

Download Citations
WANG Lian-rui, CHEN Jun, YANG Heng, HUANG Yang, HUANG Yang. Effectiveness and Mechanism of Improving Strength of Red Clay by Microorganism[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(5): 125-131 https://doi.org/10.11988/ckyyb.20210142

References

[1] 廖义玲,朱立军.贵州碳酸盐岩红土[M].贵阳:贵州人民出版社,2004.
[2] 张瑶丹,陈 筠,施鹏超,等.碱处理红黏土的力学强度试验研究[J].长江科学院院报,2020,37(3):170-177.
[3] 陈 筠,王 麒,于明圆,等.碱污染红黏土抗剪强度及破裂面微观结构特征研究[J].工程地质学报,2018,26(5):1300-1310.
[4] 陈 筠,赵 鹏,何维锋,等.碱污染红黏土抗剪强度特性室内试验研究[J].长江科学院院报,2017,34(12):94-100.
[5] WANG Q, CHEN J, LIU J,et al. Relationships between Shear Strength Parameters and Microstructure of Alkaline-contaminated Red Clay[J]. Environmental Science and Pollution Research, 2020, 27(27): 33848-33862.
[6] 董 吉,陈 筠,邬忠虎,等.木质素纤维红黏土强度及变形特性试验研究[J].地质力学,2019,25(3):421-427.
[7] TIWARI N, SATYAM N, SHARMA M. Micro-mechanical Performance Evaluationof Expansive Soil Biotreated with Indigenous Bacteria Using MICP Method[J]. Scientific reports, 2021, 11(1):1-12.
[8] LIU X J, FAN J Y, YU J,et al. Solidification of Loess Using Microbial Induced Carbonate Precipitation[J]. Journal of Mountain Science, 2021, 18(1):265-274.
[9] 刘汉龙,张 宇,郭 伟,等.微生物加固钙质砂动孔压模型研究[J].岩石力学与工程学报,2021,40(4):790-801.
[10] 刘汉龙,肖 鹏,肖 杨,等.微生物岩土技术及其应用研究新进展[J].土木与环境工程学报(中英文),2019,41(1):1-14.
[11] 何 稼,楚 剑,刘汉龙,等.微生物岩土技术的研究进展[J].岩土工程学报,2016,38(4):643-653.
[12] KANNAN K, BINDU J, VINOD P. Engineering Behaviour of MICP Treated Marine Clays[J]. Marine Georesources & Geotechnology, 2020, 38(7), doi: 10.1080/1064119X.2020.1728791.
[13] WEAVER T J, BURBANK M, LEWIS R,et al. Bio-induced Calcite, Iron, and Manganese Precipitation for Geotechnical Engineering Applications[C]//Geo-frontiers Conference Paper ACSE Geotechnical Special Publication, doi: 10.1061/41165(397)406.
[14] 张 宏,李颖杰,王文颖,等.微生物硫循环网络的研究进展[J].微生物学报,2021,61(6):1567-1581.
[15] 施鹏超,陈 筠,王 麒,等.细菌对红黏土抗剪强度的影响[J].长江科学院院报,2020,37(1):95-99,107.
[16] 陈 筠,施鹏超,白文胜,等.微生物矿化作用对红黏土的影响研究[J].中国岩溶,2019,38(4):612-618.
[17] 周 锋. 粉土中微生物灌浆诱导沉积物填充效果的研究[D].扬州:扬州大学,2016.
[18] 许朝阳,柏庭春,孟 涛,等.铁细菌A生物修复铅铜污染土壤[J].河海大学学报(自然科学版),2015,43(6): 569-573.
[19] 李雨霏. 基于收缩特性的贵阳红黏土结构性参数试验研究[D].贵阳:贵州大学,2020.
[20] 高 彬,杨 恒.微生物诱导产物改良红黏土的影响因素试验研究[J].路基工程,2020(4):57-61.
[21] VANOV V, JIAN C. Applications of Microorganisms to Geotechnical Engineering for Bioclogging and Biocementation of Soil in Situ[J]. Reviews in Environmental Science and Bio/Technology, 2009, 7(2) :139-153.
[22] 刘建兴. 微生物诱导矿化加固黏性土的试验与机理研究[D].杭州:浙江大学,2020.
[23] 陈嘉辉,雷学文,张 彬.基于微生物诱导碳酸钙沉积(MICP)改善淤泥质土强度[J].公路,2021,66(3):264-269.
[24] 胡 华,吴 轩.围压和渗透压对花岗岩残积土抗剪强度影响的三轴试验研究[J].厦门大学学报(自然科学版),2021,60(4):762-766.
[25] 周远忠. 红粘土侧向卸荷破损机理及其工程应用研究[D].重庆:重庆大学,2016.
PDF(2340 KB)

Accesses

Citation

Detail

Sections
Recommended

/