Correlation Between Macroscopic Mechanical Strength and Microstructure of Fly Ash Cement Soil under Combined Effect of Water Pollution and Freeze-Thaw Cycles

NI Jing, HE Qing-qing, LI Shan-shan, MA Lei, ZHANG Shu-ling

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (9) : 97-104.

PDF(5788 KB)
PDF(5788 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (9) : 97-104. DOI: 10.11988/ckyyb.20200581
ROCK-SOIL ENGINEERING

Correlation Between Macroscopic Mechanical Strength and Microstructure of Fly Ash Cement Soil under Combined Effect of Water Pollution and Freeze-Thaw Cycles

  • NI Jing, HE Qing-qing, LI Shan-shan, MA Lei, ZHANG Shu-ling
Author information +
History +

Abstract

The correlation between macroscopic mechanical strength and microstructure of fly ash cement soil subjected to water pollution and frost attack was investigated. The macroscopic mechanical strength was obtained from unconfined compressive strength tests through which the effects of water pollution type,number of freeze-thaw cycles,ratio of curing agent,and curing age were analyzed;the microstructure of the stabilized soil such as porosity and mineral composition was examined by permeability test,microscopic scanning electron microscopy(SEM) test and X-ray diffraction(XRD) test. Research results indicated that frost attack reduced the compressive strength of the stabilized soil and undermined the beneficial effect of extending curing age. Water pollution also resulted in a decreased compressive strength,and in particular,industrial wastewater had a stronger effect than sanitary water. In the polluted water environment,the high strength cementation transferred to the low strength cementation,while non-gelling crystals were produced,reducing the bonding performance of the cementitious material in the stabilized soil. As a result,the change in the microstructure impaired the macroscopic mechanical strength of the stabilized soil. In addition,with the increase of fly ash content,the porosity of the stabilized soil declined slightly while the permeability surged remarkably,which weakened the resistance to frost attack,especially in polluted water environment.

Key words

fly ash cement soil / water pollution / freeze-thaw cycles / unconfined compressive strength / microstructure

Cite this article

Download Citations
NI Jing, HE Qing-qing, LI Shan-shan, MA Lei, ZHANG Shu-ling. Correlation Between Macroscopic Mechanical Strength and Microstructure of Fly Ash Cement Soil under Combined Effect of Water Pollution and Freeze-Thaw Cycles[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(9): 97-104 https://doi.org/10.11988/ckyyb.20200581

References

[1] 李建军, 梁仁旺. 水泥土抗压强度和变形模量试验研究[J]. 岩土力学, 2009, 30(2): 473-477.
[2] 艾志伟, 邓通发. 水泥土强度的影响因素研究进展[J]. 公路, 2014, 59(1): 195-199.
[3] 宋新江, 徐海波, 周文渊, 等. 水泥土应力-应变特性真三轴试验研究[J]. 岩土力学, 2016, 37(9): 2489-2495.
[4] 曹智国, 章定文. 水泥土无侧限抗压强度表征参数研究[J]. 岩石力学与工程学报, 2015 , 34(增刊1): 3446-3451.
[5] 陈四利, 杨雨林, 周 辉, 等. 污水环境对水泥土渗透性能影响的试验研究[J]. 岩土力学, 2015, 36(11): 3047-3054.
[6] 张 雷, 王晓雪, 叶 勇, 等. 水泥土抗渗性能室内试验研究[J]. 岩土力学, 2006, 27(增刊2): 1192-1196.
[7] 张精禹, 陈四利, 李艳宇, 等. 水泥土渗透系数的试验研究[J]. 施工技术, 2015, 44(增刊1): 608-610.
[8] 陈四利, 侯 芮, 倪春雷, 等. 基于三轴压缩试验的水泥土力学特性研究[J]. 硅酸盐通报, 2018, 37(12): 4012-4017.
[9] 刘泉声,柳志平,程 勇,等. 水泥土在侵蚀环境中的试验研究和等效分析[J]. 岩土力学, 2013, 34(7): 1854-1860.
[10] 陈 达, 廖迎娣, 庄 宁, 等. 水泥品种对水泥土力学性能与耐久性的影响[J]. 施工技术, 2012, 41(4): 84-86.
[11] 江国龙, 陈四利, 王军祥, 等. 循环荷载作用下水泥土力学特性试验研究[J]. 地下空间与工程学报, 2017, 13(增刊2): 524-528.
[12] 赵国荣, 王 妍, 黎良杰. 侵蚀环境对水泥土力学性能影响研究[J]. 岩土工程技术, 2016, 30(5): 258-261.
[13] 郝 伟, 孙天辉. 生活污水侵蚀下水泥土特性试验研究[J]. 低温建筑技术, 2017, 39(8): 133-136.
[14] 陈四利, 杨雨林, 张精禹. 污水环境对水泥土力学性能的影响试验研究[J]. 土木建筑与环境工程, 2015, 37(4): 112-117.
[15] 魏海斌. 冻融循环对粉煤灰土动力特性影响的理论与试验研究[D]. 长春:吉林大学, 2007.
[16] 郑 郧, 马 巍, 邴 慧. 冻融循环对土结构性影响的试验研究及影响机制分析[J]. 岩土力学, 2015, 36(5): 1282-1287.
[17] 张淑玲, 倪 静, 马 蕾, 等. 冻融循环作用后水泥土及粉煤灰土的力学性能试验研究[J]. 水资源与水工程学报, 2018, 29(4): 196-201.
[18] 董 慧, 胡 俊, 刘 勇. 冻融水泥土力学特性试验研究[J]. 森林工程, 2015, 31(5): 114-117.
[19] 韩鹏举, 刘 新, 白晓红. 硫酸钠对水泥土的强度及微观孔隙影响研究[J]. 岩土力学,2014, 35(9): 2555-2561.
[20] 刘剑平, 武 涛, 郝羽婷, 等. Na2SO4环境下CMK-水泥土强度机理的研究[J]. 非金属矿, 2018, 41(5): 7-10.
[21] 陶高梁, 吴小康, 杨秀华, 等. 水泥土的孔隙分布及其对渗透性的影响[J]. 工程地质学报, 2018, 26(5): 1243-1249.
[22] 曹 净, 孙成蛟, 高 越, 等. 富里酸环境下粉煤灰水泥土的腐蚀性试验研究[J]. 硅酸盐通报, 2018, 37(6): 2019-2024.
[23] GB/T 50123—2019,土工试验方法标准[M]. 北京: 中国计划出版社, 2019.
[24] 王晓倩,杨俊杰,董猛荣,等. 海水浓度对水泥土强度的影响及机理[J]. 中国海洋大学学报(自然科学版), 2018, 48(增刊2): 134-141.
[25] 孔晓璇, 柳志平, 邱 晓, 等. 水泥土在海水侵蚀下耐久度的初步探讨[J]. 混凝土世界, 2011(11): 72-76.
[26] 丰曙霞, 王培铭. 粉煤灰在硅酸盐水泥浆体中的化学反应[J]. 建筑材料学报, 2017, 20(3): 321-325.
[27] 贾景超, 陈志涛, 郭佳朋, 等. 可溶盐对水泥土强度影响试验研究[J]. 人民长江, 2019, 50(增刊1): 298-301.
[28] 宁宝宽, 陈四利, 刘 斌, 等. 环境侵蚀下水泥土的力学效应试验研究[J]. 岩土力学, 2005, 26(4): 600-603.
[29] 邢皓枫, 徐 超, 叶观宝, 等. 可溶盐离子对高含盐水泥土强度影响的机理分析[J]. 中国公路学报, 2008(6): 26-30.
[30] 杨爱武, 肖 敏, 周玉明. 石灰粉煤灰固化天津滨海软土试验研究[J]. 地下空间与工程学报, 2019, 15(1): 60-67.
[31] 石建稳, 陈少华, 王淑梅, 等. 粉煤灰改性及其在水处理中的应用进展[J]. 化工进展, 2008(3): 326-334,347.
PDF(5788 KB)

Accesses

Citation

Detail

Sections
Recommended

/