Control Effect of Controlling Structural Plane's Geometric Parameters on Stability of Tunnel's Surrounding Rock—Case Study on Xiangjiawan Tunnel of Zhengzhou-Wanzhou High-speed Railway

YUAN Bin, XU Fan-xian, LIAO Huan, DENG Kai-feng, ZHONG Yu-tian, JIN Tao, LUO Gang

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (4) : 115-121.

PDF(5650 KB)
PDF(5650 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (4) : 115-121. DOI: 10.11988/ckyyb.20181327
ROCK-SOIL ENGINEERING

Control Effect of Controlling Structural Plane's Geometric Parameters on Stability of Tunnel's Surrounding Rock—Case Study on Xiangjiawan Tunnel of Zhengzhou-Wanzhou High-speed Railway

  • YUAN Bin1, XU Fan-xian2, LIAO Huan1, DENG Kai-feng1, ZHONG Yu-tian1, JIN Tao1, LUO Gang1
Author information +
History +

Abstract

The deformation and failure of tunnel's surrounding rock is closely related to factors such as rock strength, characteristics of structural plane, groundwater and geostress. The geometric parameters (spacing and inclination) of the controlling structural plane affect the macro-integrity of the surrounding rock and the stress distribution after excavation, and furthermore, control the plastic deformation of the surrounding rock and the shear-slipping of structural plane. In order to study the control effect of structural plane's geometric parameters on the stability of tunnel's surrounding rock, we analyzed the deformation and failure of surrounding rock of Xiangjiawan tunnel in Zhengzhou-Wanzhou high-speed railway as a case study using UDEC based on regional geo-environmental investigation, geologic sketch of tunnel face, and test of the rock physical and mechanic parameters. Results demonstrated that the spacing and inclination of structural plane have a significant influence on the deformation and failure of surrounding rock. The stability of surrounding rock should be relatively superior during the tunnelling construction when the spacing of the structural plane was greater than 1/10 diameter and the inclination of the structural plane was in the range from 0° to 30°. The research finding has practical guiding significance for the safety construction of similar tunnels.

Key words

tunneling engineering / controlling structural plane / stability of surrounding rock / UDEC discrete element software / spacing between structural plane / inclination of structural plane

Cite this article

Download Citations
YUAN Bin, XU Fan-xian, LIAO Huan, DENG Kai-feng, ZHONG Yu-tian, JIN Tao, LUO Gang. Control Effect of Controlling Structural Plane's Geometric Parameters on Stability of Tunnel's Surrounding Rock—Case Study on Xiangjiawan Tunnel of Zhengzhou-Wanzhou High-speed Railway[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(4): 115-121 https://doi.org/10.11988/ckyyb.20181327

References

[1] 谭松林, 黄 玲, 李亚伟. 模糊层次综合评价在深埋隧道围岩质量分级中的应用[J]. 地质科技情报, 2009, 28(1):105-108.
[2] 彭蓉蓉. 基于三维重构的隧道围岩稳定性快速分析及动态反馈[J]. 隧道建设, 2017, 37(5):565-570.
[3] 刘建友, 赵 勇, 过燕芳. 软弱围岩隧道安全快速施工技术研究[J]. 隧道建设,2011,31(增刊1):381-387.
[4] 于国新,白明洲,许兆义.铁路隧道围岩分级的知识挖掘[J].铁道学报,2007,29(4):125-130.
[5] 许 兵, 黄鼎成, BING X, 等. 岩体结构特性及其对岩体稳定的影响[J]. 地质科学, 1976, 11(4):367-373.
[6] 王克忠,吴 慧,马 菲.基于结构面几何参数的深部隧洞围岩破坏机理研究[J].长江科学院院报,2018,35(3):159-163.
[7] 赵景彭.节理倾角对层状岩体大断面隧道稳定性研究[J].铁道建筑,2011(9):58-61.
[8] 蒋 锋, 唐礼忠, 高龙华. 不同倾角结构面组合下巷道围岩稳定性数值分析[J]. 铁道科学与工程学报, 2015(5):1157-1163.
[9] 刘学增,刘文艺,索超峰.节理倾角对公路隧道围岩塌落拱影响分析[J]. 现代隧道技术,2014,51(6):73-77.
[10]石益东,李志忠,李 军,等. 两组耦合节理工况下隧道变形的数值研究[J]. 现代隧道技术, 2014, 51(6):89-93.
[11]HE P, LI S C, LI L P, et al. Discontinuous Deformation Analysis of Super Section Tunnel Surrounding Rock Stability Based on Joint Distribution Simulation[J]. Computers & Geotechnics, 2017, 91: 218-229.
[12]刘 邦,朱哲明,周 磊,等. 贯穿隧道的节理对隧道稳定性的影响[J].煤炭学报,2018,43(5):1296-1304.
[13]张志强, 何本国, 关宝树. 节理岩体隧道围岩稳定性判定指标合理性研究[J]. 现代隧道技术, 2012, 49(1):12-19.
[14]SONG J J, LEE C I, SETO M. Stability Analysis of Rock Blocks around a Tunnel Using a Statistical Joint Modeling Technique[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2001, 16(4): 341-351.
[15]WU J H, OHNISHI Y, NISHIYAMA S. Simulation of the Mechanical Behavior of Inclined Jointed Rock Masses during Tunnel Construction Using Discontinuous Deformation Analysis (DDA)[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(5): 731-743.
[16]BAHAADDINI M, HAGAN P, MITRA R, et al. Numerical Study of the Mechanical Behavior of Nonpersistent Jointed Rock Masses[J]. International Journal of Geomechanics, 2016, 16(1): 04015035.
[17]刘世超. 节理岩体隧道围岩稳定性离散元数值模拟[J]. 四川建筑, 2012, 32(1):81-82.
[18]王志坚.郑万高铁隧道大断面机械化施工关键技术研究[J].隧道建设(中英文),2018,38(8):1257-1270.
[19]刘贵应,陈建平,魏新颜,等.人工神经网络在隧道围岩稳定性识别中的应用[J]. 地质科技情报, 2002, 21(1):95-98.
[20]段群苗.隧道围岩优势节理面统计及其块体稳定性分析[J].现代隧道技术,2013,50(3):52-58.
[21]罗国煜, 吴 浩. 岩坡优势面分析理论与方法[J]. 水文地质工程地质, 1989(2):1-5.
[22]马超锋,介玉新,王笃礼,等.山岭隧道施工阶段围岩动态分级研究[J].铁道学报,2013,35(10):106-113.
[23]许 兵,黄鼎成.岩体结构特性及其对岩体稳定的影响[J].地质科学,1976(4):367-373.
PDF(5650 KB)

Accesses

Citation

Detail

Sections
Recommended

/