Analysis of Tunnel Monitoring Measurement Data Based on the Optimum Weighted Combinatorial Prediction Model

QIU Zi-feng, SHEN Jian, FU Xu-dong, LUO Hao-wei

Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (5) : 53-57.

PDF(801 KB)
PDF(801 KB)
Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (5) : 53-57. DOI: 10.11988/ckyyb.20150828
ENGINEERING SAFETY AND DISASTER PREVENTION

Analysis of Tunnel Monitoring Measurement Data Based on the Optimum Weighted Combinatorial Prediction Model

  • QIU Zi-feng1, SHEN Jian1, FU Xu-dong1, LUO Hao-wei2
Author information +
History +

Abstract

By using monitoring technology we can collect information of the dynamics of surrounding rock in the process of construction, and hence judging the stability of surrounding rock condition and determining the right time of secondary lining and verifying the rationality of supporting mode. Through the analysis of tunnel monitoring measurement data of Huaying mountain tunnel, we established several regression models for comparison, and obtained two regression models of high precision. Then we applied the optimum weighted combinatorial prediction model (OWCPM) to predict the arch crown settlement, and compared the result with those of single prediction models. The OWCPM is verified to be superior to single models. According to the results of the OWCPM, we analyzed the deformation rate, and hence determining the timing of secondary lining. The results show that the OWCPM in analyzing tunnel monitoring measurement data improves the prediction accuracy, and better reflects the development trend of crown settlement compared with single forecast models.

Key words

tunneling engineering / monitoring measurement data / regression analysis model / optimum weighted combinatorial prediction model / prediction accuracy

Cite this article

Download Citations
QIU Zi-feng, SHEN Jian, FU Xu-dong, LUO Hao-wei. Analysis of Tunnel Monitoring Measurement Data Based on the Optimum Weighted Combinatorial Prediction Model[J]. Journal of Changjiang River Scientific Research Institute. 2016, 33(5): 53-57 https://doi.org/10.11988/ckyyb.20150828

References

[1] TB10121—2007/J721—2007,铁路隧道监控量测技术规程[S]. 北京: 中国铁道出版社, 2007.
[2] 邱青长,谢仁红,文辉辉,等. 珠藏洞隧道施工安全监测与量测分析[J]. 长江科学院院报,2014,31(7):34-38.
[3] 凌同华, 李品钰, 张 胜,等. 隧道监测数据回归分析模型选择与优化的灰色局势决策法[J]. 中外公路, 2013, 33(1):190-194.
[4] 谢仁红, 邹朋高, 文辉辉. BP神经网络在隧道监控量测数据处理中的应用[J]. 水力发电, 2013, 39(9):20-22.
[5] 孙新亮, 汪 稔. 自适应时序模型在地下工程位移预报中的应用[J].岩石力学与工程学报,2004,23(9):1465-1469.
[6] 尹志光, 岳 顺, 钟 焘,等. 基于ARMA 模型的隧道位移时间序列分析[J]. 岩土力学,2009,30(9):2727-2732.
[7] 何亚伯, 梁 城. 非等距时间序列模型在隧道拱顶位移预测中的应用[J]. 岩石力学与工程学报, 2014, 33(增2):4096-4101.
[8] 郎茂祥. 预测理论与方法[M]. 北京: 清华大学出版社,北京交通大学出版社,2011.
[9] 金永强, 顾冲时, 于 鹏. 变权组合预测模型在大坝安全监测中的应用[J]. 水电自动化与大坝监测, 2006, (5):60-62.
[10]崔 巍, 王新民, 杨 策. 变权组合预测模型在滑坡预测中的应用[J]. 吉林大学学报:信息科学版, 2010, 28(2):172-176.
[11]李晓红. 隧道新奥法及其量测技术[M]. 北京:科学出版社,2002.
[12]杨建文, 杨德宏, 赵福洪. 变权组合模型两种定权方法精度探讨[J]. 测绘工程, 2014, 23(5):29-32.
[13]王玉荣. 如何选择统计预测模型[J]. 中国统计, 2003, (11):20-21.
PDF(801 KB)

Accesses

Citation

Detail

Sections
Recommended

/