To study the surrounding rock stability of deep buried water-rich tunnel in the presence of seepage, we conducted numerical simulation of the excavation process of a tunnel project in FLAC3D in consideration of fluid-solid coupling, and further compared the simulation result with field monitoring result. The comparison revealed that the gradient of pore water pressure changed rapidly after the left bottom sidestep was excavated, indicating that water burst would probably occur at both sides along with tunnel excavation; the stress and pore water pressure tended to be stable after the excavation of inverted arch. Furthermore, we proposed an excavation risk function according to α, which is defined as the ratio of pore water pressure to stress, to determine the most dangerous depth of working face excavation. When α is larger than 4.51, the working face is extremely prone to suffer from instability, indicating that drainage is required. The predicative function is of high accuracy, hence could offer reference for future projects.
Key words
tunneling engineering /
fluid-solid coupling /
inversion theory /
field monitoring /
numerical simulation /
prediction function
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1]KASPER T, MESCHKCE G.A Numerical Study of the Effect of Soil and Grout Material Properties and Cover Depth in Shield Tunneling[J].Computers and Geotechnics,2006,33 (4):234-247.
[2] 姚多喜,鲁海峰.煤层底板岩体采动渗流场一应变场耦合分析[J].岩石力学与工程学报,2012,31(增1):2738-2744.
[3] 邓宗伟,伍振志,曹 浩,等.基于流固耦合的泥水盾构隧道施工引发地表变形[J].中南大学学报(自然科学版),2013,44(2):785-791.
[4] 盛素玲,熊晓晖,熊德敏.基于流固耦合的坡度对TBM斜井围岩的影响研究[J].防灾减灾工程学报,2017,37(2):1-8.
[5] 李术才,王 凯,李利平,等.海底隧道新型可拓展突水模型试验系统的研制及应用[J].岩石力学与工程学报,2014,33(12):2409-2418.
[6] 齐 春,何 川,封 坤.考虑流固耦合效应的水下盾构隧道受力特性[J].西南交通大学学报,2015,50(2):306-311.
[7] 李 亮,杜修力,崔智谋,王相宝.基于流固耦合两相介质动力模型的水下隧道结构地震反应研究[J].应用基础与工程科学学报,2015,23(4):763-772.
[8] 宋锦虎,陈坤福,马 元,等.波动推力引起的超孔压对开挖面稳定性的影响分析[J].岩石力学与工程学报,2016,35(增1):3353-3364.
[9] 李廷春,吕连勋,段会玲,等.深埋隧道穿越富水破碎带围岩突水机理[J].中南大学学报(自然科学版),2016,47(10):3469-3476.
[10]邹育麟,何 川,胡雄玉,等.富水区隧道合理防排水型式及注浆加固参数研究[J].防灾减灾工程学报,2014,34(4):485-491.
[11]汪亚莉,许 模,张强,等.云南洱海东侧引水隧道地下水环境负效应探讨[J].长江科学院院报,2016,33(2):14-18.
[12]姚华彦,邵 迅,张振华,等.基于破坏接近度的地铁隧道流固耦合稳定性分析[J].应学学报,2016:33(6):1057-1064.
[13]徐干成,自洪才,郑颖人,等.地下工程支护结构[M].北京:中国水利水电出版社,2002: 145-196.
[14]潘昌实.隧道力学数值方法[M].北京:中国铁道出版社,1995:95-136.
[15]白明洲,许兆义,时 静.复杂地质条件下浅埋暗挖地铁施工期地面沉降量FLAC3D分析[[J].岩石力学与工程学报,2006, 25(增2):4254-4259.