Numerical Computations Based on Cover Meshes with Arbitrary Shapes and on Exact Geometric Boundaries

SU Hai-dong, FU Zhi, XIE Zhi-qiang

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (7) : 167-174.

PDF(5009 KB)
PDF(5009 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (7) : 167-174. DOI: 10.11988/ckyyb.20181071
NUMERICAL MANIFOLD METHOD BASED ON INDEPENDENT COVERS

Numerical Computations Based on Cover Meshes with Arbitrary Shapes and on Exact Geometric Boundaries

  • SU Hai-dong1,2, FU Zhi1, XIE Zhi-qiang1,2
Author information +
History +

Abstract

Finite element meshes should keep regular shape as much as possible, and ensure correct connections through nodes. These requirements pose a great burden to the pre-processing procedure of numerical computations for solving domains with complex shapes. On the other hand, curve boundaries in practical situations are usually discretized into shapes which finite element meshes can describe, resulting in an imprecise simulation of exact geometry defined in CAD. In view of this, cover meshes with arbitrary shapes and arbitrary connections are implemented using Manifold Method based on independent covers. Exact geometric boundaries of CAD models and boundary conditions are simulated in CAE analyses. The solving domain is divided into block meshes with arbitrary shapes which can contain curve boundaries. And two approaches, including analytical integration method with simplexes and numerical integration method, can be used for the block integration. The thin strips for cover overlapping are considered only in the integration process, but are not necessarily involved in the generation of computation models. Essential boundary conditions are strictly applied through boundary strips, including the boundary conditions on curves. Moreover, two numerical examples are given to illustrate the validity of the method. Cover meshes with arbitrary shapes bring about a new path for numerical computations based on exact geometric models and automatic pre-processing procedures.

Key words

meshes with arbitrary shapes / exact geometry / essential boundary conditions / Numerical Manifold Method (NMM) / independent covers

Cite this article

Download Citations
SU Hai-dong, FU Zhi, XIE Zhi-qiang. Numerical Computations Based on Cover Meshes with Arbitrary Shapes and on Exact Geometric Boundaries[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(7): 167-174 https://doi.org/10.11988/ckyyb.20181071

References

[1] ZIENKIEWICZ O C, TAYLOR R L. The Finite Element Method[M]. Edition 5. Oxford, England: Butterworth-Heinemann, 2000.
[2] 岑 松,尚 闫,周培蕾,等.形状自由的高性能有限元方法研究的一些进展[J].工程力学,2017,34(3):1-14.
[3] 王兆清. 多边形有限元研究进展[J].力学进展,2006,36(3):344-353.
[4] 张 雄,刘 岩,马 上. 无网格法的理论及应用[J]. 力学进展,2009,39(1):1-36.
[5] HUGHES T J R, COTTRELL J A, BAZILEVS Y. Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005,194(39/41): 4135-4195.
[6] 苏海东,颉志强,龚亚琦,等.基于独立覆盖的流形法收敛性及覆盖网格特性[J]. 长江科学院院报,2016,33(2):131-136.
[7] SHI G H. Manifold Method of Material Analysis[C]∥Proceedings of the Ninth Army Conference on Applied Mathematics and Computing, Minneapolis, Minnesota, U.S.A., 1991:51-76
[8] BABUSKA I, MELENK J M. The Partition of Unity Method[J]. International Journal for Numerical Methods in Engineering,1997, 40:727-758.
[9] 祁勇峰,苏海东,崔建华.部分重叠覆盖的数值流形方法初步研究[J].长江科学院院报, 2013,30(1):65-70.
[10]SU H D,QI Y F,GONG Y Q,et al. Preliminary Research of Numerical Manifold Method Based on Partly Overlapping Rectangular Covers[C]∥DDA Commission of International Society for Rock Mechanics. Proceedings of the 11th International Conference on Analysis of Discontinuous Deformation (ICADD11).Fukuoka, Japan, August 27-29,2013, London: Taylor & Francis Group,2013:341-347.
[11]苏海东,祁勇峰,龚亚琦,等. 任意形状覆盖的数值流形方法初步研究[J]. 长江科学院院报,2013,30(12):91-96.
[12]苏海东,颉志强.独立覆盖流形法的本质边界条件施加方法[J]. 长江科学院院报,2017,34(12):140-146.
[13]陈积瞻,苏海东,祁勇峰. 基于CAD几何的数值流形方法初步研究[J]. 长江科学院院报,2016,33(2):137-143.
[14]苏海东,颉志强. 梁的独立覆盖分析方法[J]. 长江科学院院报,2018,35(4):143-150.
[15]苏海东,周 朝,颉志强. 基于精确几何的曲梁分析新方法[J]. 长江科学院院报, 2018,35(4):151-157,166.
[16]苏海东,周 朝,颉志强,等. 采用独立覆盖流形法分析精确几何描述的曲壳[J]. 长江科学院院报, 2018,35(4):158-166.
[17]石根华. 数值流形方法与非连续变形分析[M]. 裴觉民,译.北京: 清华大学出版社,1997.
[18]林绍忠. 单纯形积分的递推公式[J]. 长江科学院院报,2005,22(3):32-34.
[19]林绍忠,祁勇峰,苏海东. 基于矩阵特殊运算的高阶流形单元分析[J]. 长江科学院院报, 2006,23(3):36-39.
[20]苏海东,祁勇峰,龚亚琦. 裂纹尖端解析解与周边数值解联合求解应力强度因子[J]. 长江科学院院报, 2013,30(6):83-89.
[21]钱伟长,叶开沅.弹性力学[M].北京:科学出版社,1956:213-242.
[22]苏海东,陈积瞻,颉志强,等.基于独立覆盖流形法的CAD与CAE融合研究[J]. 长江科学院院报,2017,34(12):133-139,154.
PDF(5009 KB)

Accesses

Citation

Detail

Sections
Recommended

/