The iterative process of design-analysis-redesign implies urgent requests of the integration of computer aided design (CAD) and computer aided engineering (CAE). In this paper, we present a numerical manifold method (NMM) based on CAD geometry: we can arrange mathematical meshes and set order of approximation functions according to the complexity degree of physical field distribution in CAE, which is more reasonable than isogeometric analysis (IGA) method. Through introducing automatic and fast cutting operations, we can realize direct modeling from CAD model to CAE model without modifications. Moreover, to solve the problem that curves on geometric boundaries are required to be discretized into line segments in present NMM, we put forward algorithms to cut the curves of geometric boundary with the lines of mesh boundary, hence preserving the shape of the geometric model in the procedures of CAE modeling and mesh refinement. Furthermore, as for the polynomial approximation functions usually used in NMM, we deduce analytical integral formula of “approximate” simplex with a curved edge and use it to obtain precise integral calculations of manifold elements with curved boundaries. Finally, we verify the feasibility of the method through an example of a circular hole in a plate. The research offers new thinking for the integration of CAD and CAE, and lays foundation for the automatic analysis from CAD models to CAE.
Key words
numerical manifold method (NMM) /
isogeometric analysis (IGA) /
CAD geometry /
cutting of curves and lines /
simplex integration /
CAD/CAE cooperativity
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 百度百科.CAE [EB/OL].(2015-06-11)[2015-07-10]. http://baike.baidu.com/view/112169.htm.
[2] HUGHES T J R,COTTRELL J A,BAZILEVS Y. Isogeometric Analysis:CAD,Finite Elements,NURBS,Exact Geometry and Mesh Refinement[J]. Computer Methods in Applied Mechanics and Engineering,2005,194:39-41.
[3] 吴紫俊, 黄正东, 左兵权, 等. 等几何分析研究概述[J]. 机械工程学报,2015,51(5):114-129.
[4] 夏 阳. 假设位移协调有限元及其在精确几何分析中的应用[D].大连:大连理工大学,2013.
[5] SHI G H. Manifold Method of Material Analysis[C]// U.S. Army Research Office. Transactions of the Ninth Army Conference on Applied Mathematics and Computing, Minneapolis, Minnesota, U S A, June 18-21,1991:57-76.
[6] 石根华.数值流形方法与非连续变形分析[M]. 裴觉民译.北京:清华大学出版社,1997.
[7] 张湘伟, 章争荣, 吕文阁, 等. 数值流形方法研究及应用进展 [J]. 力学进展, 2010, 40(1): 1-12 .
[8] 祁勇峰, 苏海东, 崔建华.部分重叠覆盖的数值流形方法初步研究 [J].长江科学院院报, 2013,30(1):65-70 .
[9] 苏海东,颉志强,龚亚琦,等. 基于独立覆盖的流形法的收敛性及覆盖网格特性[J]. 长江科学院院报,2016,33(2):131-136.
[10]苏海东,祁勇峰. 部分重叠覆盖流形法的覆盖加密方法 [J]. 长江科学院院报, 2013, 30(7):95-100.
[11]林绍忠,祁勇峰,苏海东.基于矩阵特殊运算的高阶流形单元分析[J]. 长江科学院院报, 2006,23(3):36-39.
[12]林 永,陈 浩.用二分法求解一元实系数多项式方程的全部实根[J]. 大学数学,2008,24(4):89-91 .
[13]孙家广,杨长贵. 计算机图形学[M]. 北京:清华大学出版社,1995.
[14]林绍忠. 单纯形积分的递推公式[J]. 长江科学院院报, 2005,22(3):32-34.
[15]苏方方. 动态规划算法计算组合数Cmn[J]. 现代计算机,2011,(10):35-37.
[16]徐芝纶.弹性力学(第2版)[M].北京: 人民教育出版社,1982.