Preliminary Implementation of Automatic Computation for Static Analysis of Structures Using NMM Based on Independent Rectangular Covers

SU Hai-dong, GONG Ya-qi, XIE Zhi-qiang, QI Yong-feng

Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (2) : 144-150.

PDF(2361 KB)
PDF(2361 KB)
Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (2) : 144-150. DOI: 10.11988/ckyyb.20150919
NUMERICAL MANIFOLD METHOD BASED ON INDEPENDENT COVERS

Preliminary Implementation of Automatic Computation for Static Analysis of Structures Using NMM Based on Independent Rectangular Covers

  • SU Hai-dong, GONG Ya-qi, XIE Zhi-qiang, QI Yong-feng
Author information +
History +

Abstract

By means of numerical manifold method (NMM) based on independent rectangular covers proposed in previous study, we present an automatic computation method for static analysis of linear-elastic structures, including automatic pre-processing, self-adaptive analyses and so on. According to the characteristics of independent covers, we give 3 indexes for posterior error such as index of strain continuity in strip area between two covers, stress index on boundary surfaces and high-order error in an independent cover. By using convenient h-version mesh refinement and p-version order increasing in the new method, we implement h-p version self-adaptivity in a selected way to realize h-version refinement of rectangular covers by using simple bisection method. Some 2D numerical examples are given to illustrate the feasibility of automatic computation, in which all the procedures are automatically accomplished by the computer, except for necessary manual input of structural outlines, material parameters, and boundary conditions. Finally, we obtain calculated data with certain precision.

Key words

numerical manifold method (NMM) / independent covers / automatic computation / error estimation / h-p hybrid adaptivity / static analysis of structures

Cite this article

Download Citations
SU Hai-dong, GONG Ya-qi, XIE Zhi-qiang, QI Yong-feng. Preliminary Implementation of Automatic Computation for Static Analysis of Structures Using NMM Based on Independent Rectangular Covers[J]. Journal of Changjiang River Scientific Research Institute. 2016, 33(2): 144-150 https://doi.org/10.11988/ckyyb.20150919

References

[1] 百度百科.CAE [EB/OL].(2015-06-11)[2015-07-10]. http:∥baike.baidu.com/view/112169.htm.
[2] ZIENKIEWICZ O C, TAYLOR R L. The Finite Element Method (The Fifth Edition) [M]. Oxford, Great Britain: Butterworth-Heinemann, 2000.
[3] DUARTE C A, BABUSKA I, ODEN J T. Generalized Finite Element Methods for Three-dimensional Structural Mechanics Problems [J]. Computer & Structures, 2000,77:215-232.
[4] 李录贤, 刘书静, 张慧华, 等. 广义有限元方法研究进展 [J]. 应用力学学报, 2009, 26(1): 96-108.
[5] MOES N, DOLBOW J, BELYTSCHKO T. A Finite Element Method for Crack Growth without Remeshing [J]. International Journal for Numerical Methods in Engineering, 1999, 46: 131-150.
[6] 李录贤,王铁军. 扩展有限元法(XFEM)及其应用 [J]. 力学进展, 2005, 35(1): 5-20.
[7] BELYTSCHKO T, KRONGAUZ Y, ORGAN D, et al, Meshless Methods: An Overview and Recent Developments [J]. Computer Methods in Applied Mechanics and Engineering , 1996, 139: 3-47.
[8] 张 雄,刘 岩,马 上.无网格法的理论及应用[J]. 力学进展, 2009, 39(1): 1-36.
[9] SHI G H. Manifold Method of Material Analysis[C]∥U.S. Army Research Office. Transactions of the Ninth Army Conference on Applied Mathematics and Computing. Minneapolis, Minnesota, U S A, June 18-21,1991:57-76.
[10]BABUSKA I,MELENK J M.The Partition of Unity Method[J]. International Journal for Numerical Methods in Engineering,1997, 40:727-758.
[11]张湘伟, 章争荣, 吕文阁, 等. 数值流形方法研究及应用进展 [J]. 力学进展, 2010, 40(1): 1-12.
[12]祁勇峰, 苏海东, 崔建华. 部分重叠覆盖的数值流形方法初步研究 [J]. 长江科学院院报, 2013, 30(1):65-70.
[13]SU Hai-dong, QI Yong-feng, GONG Ya-qi, et al. Preliminary Research of Numerical Manifold Method Based on Partly Overlapping Rectangular Covers [C]∥ DDA Commission of International Society for Rock Mechanics. Proceedings of the 11th International Conference on Analysis of Discontinuous Deformation (ICADD11).Fukuoka, Japan, August 27-29, 2013: 341-347.
[14]苏海东,颉志强,龚亚琦,等. 基于独立覆盖的流形法的收敛性及覆盖网格特性[J]. 长江科学院院报,2016,(2):131-136.
[15]苏海东,祁勇峰,龚亚琦,等.任意形状覆盖的数值流形方法初步研究[J].长江科学院院报,2013,30(12):91-96.
[16]苏海东,祁勇峰. 部分重叠覆盖流形法的覆盖加密方法[J]. 长江科学院院报, 2013, 30(7): 95-100.
[17]林绍忠, 苏海东. 数值流形法独立覆盖区域的一种自动选取方法[J].长江科学院院报,2014,31(12):88-91.
[18]苏海东, 祁勇峰, 龚亚琦. 裂纹尖端解析解与周边数值解联合求解应力强度因子[J]. 长江科学院院报, 2013, 30 (6): 83-89 .
[19]AKIN J E.Finite Element Analysis with Error Estimators[M]. Oxford, Great Britain: Elseviewer Butterworth-Heinemann,2005.
[20]O C 辛克维奇,K 摩根.有限元与近似法[M]. 陶振宗,张述良,周之德,译.北京:人民交通出版社,1989.
[21]石根华.数值流形方法与非连续变形分析[M]. 裴觉民译.北京: 清华大学出版社, 1997 .
[22]中国航空研究院.应力强度因子手册[M]. 北京:科学出版社,1993.
PDF(2361 KB)

Accesses

Citation

Detail

Sections
Recommended

/