Optimization of Sensor Positions in Shaking Table Test for Soil-Tunnel Structure Interactions

WANG Jian-ning, DOU Yuan-ming, WEI Ming, ZHU Xu-xi, DUAN Zhi-hui, TIAN Gui-zhou

Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (2) : 144-150.

PDF(4020 KB)
PDF(4020 KB)
Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (2) : 144-150. DOI: 10.11988/ckyyb.20170657
INSTRUMENTATION DEVELOPMENT AND TESTING TECHNIQUES

Optimization of Sensor Positions in Shaking Table Test for Soil-Tunnel Structure Interactions

  • WANG Jian-ning1,2, DOU Yuan-ming1,2, WEI Ming3, ZHU Xu-xi4, DUAN Zhi-hui1, TIAN Gui-zhou1
Author information +
History +

Abstract

The seismic responses of metro shield tunnel in soft soil area were analyzed by using finite-infinite element coupled analysis model. The acceleration responses, the displacement responses and the law of dynamic strain of soil-metro shield tunnel system were studied. According to the influential factors and characteristics of soil-metro structure’s seismic responses, the layout principle of sensors was summarized, which defined the location of the observation section and the main observation indexes of shield tunnel structure in shaking table test. Results unveiled that the high-frequency component of seismic waves were filtered and the low-frequency component were amplified by foundation soil. The acceleration amplification factor of foundation was related with buried depth and seismic waveform. The maximal seismic stress responses of tunnel structure were located in an angle of 30° to the top and the bottom of tunnel which can be considered as the key points of strain measurement. The acceleration responses and dynamic pressures between structure and soil varied with height, hence the dynamic differences and variations of each point can be measured by arranging sensors at different heights of the structure. At the end of the structure, the end restraint effect on observation section 0.26D(D represents the structure width) away from the end of the structure reached 13.58%, which is about 3 times that 1D from the end. Therefore, the main and auxiliary observation sections should be at least 1D away from the end of the structure. The proposed measurement scheme in this paper guaranteed the data collection in shaking table test of metro shield tunnel and provided a reference for other model tests of underground structures.

Key words

underground engineering / shield tunnel / numerical analysis / shaking table test / sensors

Cite this article

Download Citations
WANG Jian-ning, DOU Yuan-ming, WEI Ming, ZHU Xu-xi, DUAN Zhi-hui, TIAN Gui-zhou. Optimization of Sensor Positions in Shaking Table Test for Soil-Tunnel Structure Interactions[J]. Journal of Changjiang River Scientific Research Institute. 2019, 36(2): 144-150 https://doi.org/10.11988/ckyyb.20170657

References

[1] AZADI M, HOSSEINI S M M M. Analyses of the Effect of Seismic Behavior of Shallow Tunnels in Liquefiable Grounds[J].Tunnelling and Underground Space Technology, 2010, 25(5): 543-552.
[2] 李积栋, 陶连金, 安军海, 等. 近远场地震动作用密贴交叉组合地铁车站振动台试验[J].土木工程学报, 2015, 48(10): 30-37.
[3] CHNE J, SHI X J, LI J. Shaking Table Test of Utility Tunnel Under Nonuniform Earthquake Wave Excitation[J].Soil Dynamics and Earthquake Engineering, 2010, 30(11): 1400-1416.
[4] MASOUD R M, MOHAMMAD H B. Seismic Ground Motion Amplification Pattern Induced by a Subway Tunnel: Shaking Table Testing and Numerical Simulation[J] .Soil Dynamics and Earthquake Engineering, 2016, 83: 81-97.
[5] 蒋树屏, 文栋良, 郑升宝. 嘎隆拉隧道洞口段地震响应大型振动台模型试验研究[J].岩石力学与工程学报, 2011, 30(4): 649-656.
[6] CHEN G X, CHEN S, ZUO X, et al. Shaking Table Tests and Numerical Simulations on a Subway Structure in Soft Soil[J] .Soil Dynamics and Earthquake Engineering, 2015, 76: 13-28.
[7] 陈国兴, 庄海洋, 程绍革, 等. 土-地铁隧道动力相互作用的大型振动台试验:试验方案设计[J].地震工程与工程震动, 2006, 26(6): 178-183.
[8] 王明年, 崔光耀. 高烈度地区隧道减震模型的建立及其减震效果模型试验研究[J].岩土力学, 2010, 31(6): 1884-1889.
[9] 王建宁, 窦远明, 田贵州, 等. 圆形隧道衬砌背后空洞对隧道结构影响的振动台模型试验[J].工业建筑, 2017, 47(3): 118-124+147.
[10] 窦远明, 王建宁, 田贵州, 等. 基于正交试验的软弱土质相似材料配比研究[J].铁道科学与工程学报, 2017, 14(3): 480-487.
[11] 刘如山. 强地震动作用下地铁结构与土脱开滑移的研究[J].地震工程与工程震动, 2004, 24(6): 136-141.
[12] 周恒松. 雅泸高速公路隧道减震模型试验[D].成都: 西南交通大学, 2008.
[13] 信春雷, 高 波, 周佳媚, 等. 跨断层隧道设置常规抗减震措施振动台试验研究[J].岩石力学与工程学报, 2014, 33(10): 2047-2056.
[14] 王 栋. 川藏公路黄草坪2#隧道地震动力响应的三维模型试验研究[D].成都: 成都理工大学, 2008.
[15] 权登州, 王毅红, 井彦林, 等. 黄土地区地铁车站数值模型及测试位置研究[J].震灾防御技术, 2015, 10(1): 108-115.
[16] 刘祥庆, 刘晶波, 王宗刚. 土-结构动力离心模型试验传感器位置的优选[J].清华大学学报(自然科学版), 2008, 48(6): 931-935.
[17] 刘晶波, 赵冬冬, 张小波, 等. 地基自由场离心机振动台模型试验研究[J].岩土工程学报, 2013, 35(5): 980-987.
PDF(4020 KB)

Accesses

Citation

Detail

Sections
Recommended

/