Creep Characteristics and Dislocation Mode of the West Branch of Longpan-Qiaohou Fault in Xianglushan Tunnel

ZHOU Hui, ZHAO Hai-tao, LI Jian, ZHAO Cheng-wei, LIU Wen-bo, ZHANG Chuan-qing, WANG Yan-zhang

Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (12) : 97-104.

PDF(3564 KB)
PDF(3564 KB)
Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (12) : 97-104. DOI: 10.11988/ckyyb.20221014
ADAPTABILITY OF TUNNELS CROSSING ACTIVE FAULTS

Creep Characteristics and Dislocation Mode of the West Branch of Longpan-Qiaohou Fault in Xianglushan Tunnel

  • ZHOU Hui1,3, ZHAO Hai-tao2, LI Jian2, ZHAO Cheng-wei1,3, LIU Wen-bo1,3, ZHANG Chuan-qing1,3, WANG Yan-zhang4
Author information +
History +

Abstract

The aim of this research is to comprehensively understand the dislocation law of creep movement of active faults. The west branch of Longpan-Qiaohou fault zone (F10-1) in Xianglushan tunnel of the Central Yunnan Water Diversion Project is taken as research background. A generalized geological model is established to investigate the dislocation law of F10-1 in the whole service period according to geological condition, rock parameters and mechanical performances. The dislocation deformation characteristics and displacement gradients are analyzed, and the stability of the tunnel is discussed in consideration of width of fracture zone and dip angle of fault. Results reveal that the dislocation patterns of the fault zone are similar, showing a sloping type. Strong dislocation disk presents a translational displacement mode, with displacement mainly occuring in the fractured area of weak rock formation. The displacement of fracture zone increases with the increasing of the service life and the fracture zone width as well as the decreasing of fault’s dip angle. According to the displacement of interface between upper influence zone and fracture zone, a large deformation in the left shoulder socket of the tunnel (except for 30° and 50°) is found. The maximum deformation is located on the left side of the tunnel. The displacement gradient presents a single peak at the fracture zone; the peak of displacement gradient increases with the growth of service life and fault dip, while reduces with the expansion of fracture zone width. The research results offer strong support for the safety construction of Central Yunnan Water Diversion Project.

Key words

tunnel / creep characteristics / dislocation mode / numerical analysis / displacement gradient / influence factor

Cite this article

Download Citations
ZHOU Hui, ZHAO Hai-tao, LI Jian, ZHAO Cheng-wei, LIU Wen-bo, ZHANG Chuan-qing, WANG Yan-zhang. Creep Characteristics and Dislocation Mode of the West Branch of Longpan-Qiaohou Fault in Xianglushan Tunnel[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(12): 97-104 https://doi.org/10.11988/ckyyb.20221014

References

[1] 丁秀丽,张雨霆,张传健, 等.隧洞穿越活动断层应对措施及其适应性研究综述[J].隧道与地下工程灾害防治,2019,1(1):20-35.
[2] 彭建兵,崔 鹏,庄建琦.川藏铁路对工程地质提出的挑战[J].岩石力学与工程学报,2020,39(12):2377-2389.
[3] 裴启涛,李海波,刘亚群.南水北调西线工程坝区初始地应力场反演分析[J].岩土力学,2012,33(增刊2):338-344.
[4] 张新辉,付 平,尹健民, 等.滇中引水工程香炉山隧洞地应力特征及其活动构造响应[J].岩土工程学报,2021,43(1):130-139.
[5] 周 云,房艳国,王家祥, 等.滇中引水工程穿过活动断裂防震抗震思路研究[J].三峡大学学报(自然科学版),2019,41(增刊1):7-11.
[6] 朱 勇,周 辉,张传庆, 等.跨活断层隧道断错灾变与防控技术研究现状和展望[J].岩石力学与工程学报,2022,41(增刊1):2711-2724.
[7] 王 威,任青文.活动断裂对深埋隧洞影响的研究概述[J].地震工程与工程振动,2006(1):175-180.
[8] 刘学增,林亮伦.75°倾角逆断层黏滑错动对公路隧道影响的模型试验研究[J].岩石力学与工程学报,2011,30(12):2523-2530.
[9] 刘学增,刘金栋,李学锋, 等.逆断层铰接式隧道衬砌的抗错断效果试验研究[J].岩石力学与工程学报,2015,34(10):2083-2090.
[10]刘学增,郭 彪,李学锋, 等.变形缝对跨断层隧道抗错断影响的模型试验研究[J].岩石力学与工程学报,2015,34(增刊2):3837-3843.
[11]刘学增,林亮伦,王煦霖, 等.柔性连接隧道在正断层黏滑错动下的变形特征[J].岩石力学与工程学报,2013,32(增刊2):3545-3551.
[12]何 川,李 林,张 景,等.隧道穿越断层破碎带震害机理研究[J].岩土工程学报,2014,36(3):427-434.
[13]KIANI M, AKHLAGHI T, GHALANDARZADEH A. Experimental Modeling of Segmental Shallow Tunnels in Alluvial Affected by Normal Faults[J]. Tunnelling and Underground Space Technology, 2016, 51:108-119.
[14]ROY N, SARKAR R. A Review of Seismic Damage of Mountain Tunnels and Probable Failure Mechanisms[J]. Geotechnical and Geological Engineering, 2016, 35(1): 1-28.
[15]ZHANG X, JIANG Y, SUGIMOTO S. Seismic Damage Assessment of Mountain Tunnel: A Case Study on the Tawarayama Tunnel Due to the 2016 Kumamoto Earthquake[J]. Tunnelling and Underground Space Technology, 2018, 71(6): 138-148.
[16]王鸿儒,钟紫蓝,赵 密, 等.走滑断层黏滑错动下隧道破坏的模型试验研究[J].北京工业大学学报,2021,47(7):691-701.
[17]韩 钢,侯 靖,周 辉, 等.层间错动带剪切蠕变试验及蠕变模型研究[J].岩石力学与工程学报,2021,40(5):958-971.
[18]马亚丽娜,盛 谦,崔 臻, 等.基于三维离散–连续耦合方法的跨活动断裂隧洞错断破坏机制研究[J].岩土工程学报,2018,40(增刊2):240-245.
[19]周光新,盛 谦,张传健,等.穿越走滑断层铰接隧洞抗错断设计参数作用机制研究[J].岩石力学与工程学报,2022,41(5):941-953.
[20]刘小岩,张传庆,史铁勇, 等.跨活断层深埋隧道轴线错动位移模式试验研究[J].岩土力学,2021,42(5):1304-1312.
PDF(3564 KB)

Accesses

Citation

Detail

Sections
Recommended

/