Cellular Automata Model of Chloride Ion Diffusion and Life Prediction of Concrete Box Girder

MA Jun-jun, LIN Peng-zhen

Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (6) : 121-126.

PDF(2253 KB)
PDF(2253 KB)
Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (6) : 121-126. DOI: 10.11988/ckyyb.20180476
HYDRAULIC STRUCTURE AND MATERIAL

Cellular Automata Model of Chloride Ion Diffusion and Life Prediction of Concrete Box Girder

  • MA Jun-jun1, LIN Peng-zhen2
Author information +
History +

Abstract

A cellular automata (CA) model of chloride ion diffusion in concrete was built based on Fick’s second law to accurately simulate the chloride ion erosion in concrete box girder, obtain the concentration of chloride ion at arbitrary position at any time in cross section, and to predict the durability life of the structure. The effects of material and age on the diffusion effect of chloride ion were taken into consideration. MATLAB calculation program was compiled based on the built CA model. Results of the study demonstrated that compared with the analytical solution and test value of chloride ion concentration, the result of the built CA model is of higher accuracy in simulating chloride ion diffusion in concrete box girder. Chloride ions diffuse in different laws varying with the form of chamfering sections, and the time required for critical concentration of chloride ion for steel corrosion is different. In addition, the model is proved to effectively predict the durability of concrete through comparison with the analytic solution of life prediction. The durability of the studied concrete box girder is around 51 years.

Key words

concrete box girder / life prediction / chloride ion diffusion / cellular automata model / numerical analysis

Cite this article

Download Citations
MA Jun-jun, LIN Peng-zhen. Cellular Automata Model of Chloride Ion Diffusion and Life Prediction of Concrete Box Girder[J]. Journal of Changjiang River Scientific Research Institute. 2019, 36(6): 121-126 https://doi.org/10.11988/ckyyb.20180476

References

[1] ZHOU Y, GENCTURK B, WILLAM K. Carbonation-Induced and Chloride-Induced Corrosion in Reinforced Concrete Structures[J]. Journal of Materials in Civil Engineering, 2015, 27(9): 1-17.
[2] 刘秉京. 混凝土结构耐久性设计[M]. 北京: 人民交通出版社, 2007.
[3] 郭冬梅, 项贻强, 程 坤,等. 沿海混凝土桥的氯离子扩散修正模型及应用[J]. 中国公路学报, 2012, 25(5): 89-94.
[4] 高子瑞, 李淑娥, 陈志明, 等. 盐渍土氯离子在混凝土中运移的耦合模型研究[J]. 长江科学院院报, 2017, 34(5):131-134,140.
[5] 姬永生, 袁迎曙. 干湿循环作用下氯离子在混凝土中的侵蚀过程分析[J]. 工业建筑, 2006, 36(12): 16-19.
[6] WANG H, LU C, JIN W, et al. Effect of External Loads on Chloride Transport in Concrete[J]. Journal of Material in Civil Engineering, 2011, 23(7): 1073-1049.
[7] SAETTA A V, SCOTTA R V, VITALIANI R V. Analysis of Chloride Diffusion into Partially Saturated Concrete[J]. ACI Materials Journal, 1993, 90(5):441-451.
[8] MANGAT P S, LIMBACHIYA M C. Effect of Initial Curing on Chloride Diffusion in Concrete Repair Materials[J]. Cement and Concrete Research, 1999, 29(9): 1475-1485.
[9] 余红发, 孙 伟. 混凝土氯离子扩散理论模型[J]. 东南大学学报(自然科学版), 2006, 36(2): 68-76.
[10]MARGOLUS N, TOFFOLI T. Cellular Automata Machines: A New Environment for Modeling[M]. Cambridge: Mit Press, 1987.
[11]朱劲松, 石晓猛, 何立坤. 混凝土桥梁氯离子侵蚀过程仿真的细胞自动机模型[J]. 应用基础与工程学报, 2013, 21(1): 127-136.
[12]孙 伟. 现代结构混凝土耐久性评价与寿命预测[M]. 北京: 中国建筑工业出版社, 2015.
[13]徐芝纶. 弹性力学[M]. 北京: 高等教育出版社, 2016.
[14]董荣珍. 氯离子在混凝土内的输运及诱发钢筋腐蚀破坏的机理研究[J]. 武汉: 华中科技大学, 2007.
[15]赵尚传, 贡金鑫, 水金峰. 氯离子环境下有钢筋混凝土桥梁耐久性的概率分析[J]. 公路交通科技, 2006, 23(7): 82-86.
[16]何世钦, 贡金鑫. 弯曲荷载作用对混凝土中氯离子扩散的影响[J]. 建筑材料学报, 2005, 8(2): 134-138.
PDF(2253 KB)

Accesses

Citation

Detail

Sections
Recommended

/