Reasonable support pressure on excavation face is the key to maintaining the tunnel face stable and safe during shield tunnelling construction. In this study, the passive failure mode of excavation face in clay strata, the plastic zone development, and the stratum displacement caused by excessive support pressure are simulated numerically in consideration of soil strength reduction induced by segmented advancing and excavation unloading. In addition, the influences of tunnel depth, tunnel diameter, and soil properties on the limit support pressure are explored. The reasonable range of limit support pressure is given through centrifugal model test. Results are concluded as follows: 1) When support pressure intensifies gradually, the front soil is squeezed into a shovel shape, and in the meantime, a ring plastic zone is formed around the excavation face due to punching and cutting effect. With the distance to excavation surface prolongs, the longitudinal strata displacement in front of excavation face increases but then decreases until stabilizes; whereas the horizontal strata displacement in the deep follows normal distribution.2) The augment of tunnel depth and tunnel diameter would amplify the limit support pressure to different extends. Support pressure is most sensitive to elastic modulus, followed by internal friction angle, Poisson’s ratio and cohesion. The range of passive limit support pressure is recommended to be 1-1.9 times of earth pressure at rest. The results would offer reference for shield tunneling construction control in clay stratum.
Key words
shield tunnelling /
clay strata /
tunnel excavation face /
passive failure /
numerical simulation /
centrifuge mode test
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 马险峰, 何蔺荞, 王俊淞. 软土地区新建盾构隧道下穿越既有隧道的离心模拟研究[J]. 长江科学院院报, 2012, 29(1): 79-84.
[2] 潘建立. 隧道掘进地层应力释放对开挖面稳定影响数值研究[J]. 土木工程学报, 2015, 48(增1): 275-278.
[3] 周舒威, 夏才初, 葛金科, 等. 黏土中超大直径顶管开挖面主动极限支护压力计算方法[J]. 岩土工程学报, 2013, 35(11): 2060-2067.
[4] BROMS B B, BENNERMARK H. Stability of Clay at Vertical Openings[J]. Journal of the Soil Mechanics and Foundations Division,1967,93(1):71-94.
[5] 陈仁朋, 齐立志, 汤旅军, 等. 砂土地层盾构隧道开挖面被动破坏极限支护力研究[J]. 岩石力学与工程学报, 2013, 32(增1): 2877-2882.
[6] 张子新, 胡 文. 黏性土地层中盾构隧道开挖面支护压力计算方法探讨[J]. 岩石力学与工程学报, 2014, 33(3): 606-614.
[7] 宋春霞, 黄茂松, 吕玺琳. 非均质地基中平面应变隧道开挖面稳定上限分析[J]. 岩土力学, 2011, 32(9): 2645-2650.
[8] 冯利坡, 郑永来, 邓树新, 等. 深埋盾构隧道开挖面三维对数螺旋破坏模式的上限分析[J]. 岩土力学, 2015, 36(7): 2105-2110.
[9] 陈仁朋, 李 君, 陈云敏, 等. 干砂盾构开挖面稳定性模型试验研究[J]. 岩土工程学报, 2011, 33(11): 117-122.
[10]范祚文, 张子新. 砂卵石地层土压力平衡盾构施工开挖面稳定及邻近建筑物影响模型试验研究[J]. 岩石力学与工程学报, 2013, 32(12): 2506-2512.
[11]刘泉维, 杨忠年. 泥水平衡盾构开挖面稳定性模型试验研究[J]. 岩土力学, 2014, 35(8): 2255-2260.
[12]OBLOZINSKY P, KUWANO J. Centrifuge Experiments on Stability of Tunnel Face[J]. Slovak Journal of Civil Engineering, 2004, (3): 23-29.
[13]IDINGER G, AKLIK P, WU W, et al. Centrifuge Model Test on the Face Stability of Shallow Tunnel[J]. Acta Geotechnica, 2011, 6(2): 105-117.
[14]CHEN R P, LI J, KONG L G, et al. ExperimentalStudy on Face Instability of Shield Tunnel in Sand[J]. Tunnelling and Underground Space Technology, 2013, 33(1): 12-21.
[15]秦建设, 虞兴福, 钟小春, 等. 黏土中盾构开挖面变形与破坏数值模拟研究[J]. 岩土力学, 2007, 28(增): 511-515.
[16]陈孟乔, 刘建坤, 肖军华. 砂土中盾构隧道开挖面失稳土体三维形状分析[J]. 岩土力学, 2013, 34(4): 961-966.
[17]黄正荣, 朱 伟, 梁精华. 盾构法隧道开挖面极限支护压力研究[J]. 土木工程学报, 2006, 39(10): 112-116.
[18]黄正荣, 朱 伟, 梁精华, 等. 浅埋砂土中盾构法隧道开挖面极限支护压力及稳定研究[J]. 岩土工程学报, 2006, 28(11): 2005-2009.
[19]费 康, 张建伟. ABAQUS在岩土工程中的应用[M]. 北京: 中国水利水电出版社, 2013.
[20]LEE C J, WU B R, CHEN H T, et al. Tunnel Stability and Arching Effects During Tunneling in Soft Clayey Soil[J]. Tunnelling and Underground Space Technology, 2006, 21(2):119-132.
[21]包承钢, 饶锡保. 土工离心模型的试验原理[J]. 长江科学院院报, 1998, 15(4): 1-4.