For manifold method, high-order displacement function is established by using complete polynomial function, which deprives the generalized freedom degrees of physical meaning. To avoid this problem, the cover displacement function can be regarded as Taylor expansion. Based on the Taylor expansion, the relations among displacement function, nodal displacement and strain are obtained, and generalized degrees of freedom have definite physical meaning after degree elevation. Furthermore, rectangular grid is used as mathematical grid to reduce physical piece and simplify preprocessing and post-processing. In the computational domain, cover displacement function with mixed-order is employed to improve computation efficiency and to combine analytical solution and numerical solution. Moreover, improved penalty function and generalized node function are used together to deal with boundary conditions, which is in strict accordance with the physical meaning of boundary condition. Finally, this method is proved to be highly efficient by numerical examples, and the accuracy of numerical solution is also improved.
Key words
manifold method /
cover displacement function /
Taylor expansion /
generalized degrees of freedom /
rectangular grid /
mixed order
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] SHI Gen-hua. Discontinuous Deformation Analysis and Numerical Models of Static and Dynamic Block System[D]. Berkeley, USA: Department of Civil Engineering, University of California, 1989.
[2] 王水林,葛修润.流形元方法在模拟裂纹扩展中的应用[J].岩石力学与工程学报,1997,16(5): 405-420. (WANG Shui-lin, GE Xiu-run. Application of Manifold Method in Simulating Crack Propagation [J]. Chinese Journal of Rock Mechanics and Engineering, 1997, 16(5):405-420. (in Chinese))
[3] 王书法, 朱维申, 李术才, 等.岩体弹塑性分析的数值流形方法[J]. 岩石力学与工程学报,2002, 21(6):900-904. (WANG Shu-fa, ZHU Wei-shen, LI Shu-cai, et al. Numerical Manifold Method of Elastic-plastic Analysis for Rock Mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2002,21(6):900-904. (in Chinese))
[4] 刘红岩, 王贵和.节理岩体冲击破坏的数值流形方法模拟[J]. 岩土力学,2009,31(11):3523-3527. (LIU Hong-yan, WANG Gui-he. Simulation of Impact Failure of Jointed Rock Mass by Numerical Manifold Method[J]. Rock and Soil Mechanics, 2009,31(11): 3523-3527. (in Chinese))
[5] 宋俊生,大西有三. 高阶四边形单元的流形方法[J]. 岩石力学与工程学报,2003,22(6): 932-936.(SONG Jun-sheng, OHNISHI YUZO. High-order Rectangular Element of Manifold Method[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(6): 932-936. (in Chinese))
[6] 蔡永昌,廖林灿,张湘伟.高精度四节点四边形流形单元[J]. 应用力学学报,2001,(2):75-80. (CAI Yong-chang, LIAO Lin-can, ZHANG Xiang-wei. A High Precision Quadrnodel-quadrangle Manifold Element[J]. Journal of Applied Mechanics, 2001, (2):75-80. (in Chinese))
[7] 石根华,裴觉民. 数值流形方法与非连续变形分析[M]. 北京:清华大学出版社,1997. (SHI Gen-hua, PEI Jue-min. Numerical Manifold Method and Discontinuous Deformation Analysis[M]. Beijing: Tsinghua University Press, 1997.(in Chinese))
[8] 李树忱, 李术才, 张京伟, 等. 数值流形方法的数学推导及其应用[J]. 工程力学,2007, 24(6):36-42. (LI Shu-chen, LI Shu-cai, ZHANG Jing-wei, et al. Numerical Manifold Method from Mathematical Theory and Its Application[J]. Journal of Engineering Mechanics, 2007, 24(6): 36-42. (in Chinese))
[9] 王芝银, 李云鹏. 在数值流形方法中的几点改进[J].岩土工程学报,1998,20(6):33-36. (WANG Zhi-yin, LI Yun-peng. Some Improvements in the Numerical Manifold Method [J]. Chinese Journal of Geotechnical Engineering, 1998, 20(6): 33-36. (in Chinese))
[10]朱爱军, 邓安福, 曾祥勇,等. 岩体工程数值流形方法的固定边界约束处理方法[J]. 岩石力学与工程学报, 2005,24(19): 3582-3587. (ZHU Ai-jun, DENG An-fu, ZENG Xiang-yong, et al. Constraints Treatment of Fixed Boundary in Numerical Manifold Method[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24 (19): 3582-3587. (in Chinese))
[11]徐芝纶. 弹性力学简明教程(第3版)[M]. 北京: 高等教育出版社, 2002. (XU Zhi-lun. Simple Tutorial of Elasticity(Third Edition)[M]. Beijing: Higher Education Press, 2002. (in Chinese))
[12]吴家龙.弹性力学[M].北京:高等教育出版社,2001. (WU Jia-long. Elastic Mechanics [M]. Beijing: Higher Education Press, 2001. (in Chinese))