State-of-Art and Prospect of Researches on Release and Diffusion of Phosphate Solid Wastes

CHEN Xia, ZHOU Xian, DENG Shan-shan, PENG Zi-ling, FAN Ze-yu, GAO Zhuo-fan, LU Qi

Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (1) : 64-73.

PDF(1831 KB)
PDF(1831 KB)
Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (1) : 64-73. DOI: 10.11988/ckyyb.20231092
Soil and Water Conservation and Ecological Restoration

State-of-Art and Prospect of Researches on Release and Diffusion of Phosphate Solid Wastes

Author information +
History +

Abstract

The diffusion of leachates from phosphate solid wastes is a major source of contaminants. Based on the existing and increment of phosphate solid waste in China as well as its environmental impacts, this study reviews the current status of researches on phosphate solid waste accumulation in China focusing on the composition, diffusion, and migration of leachates from phosphate solid wastes. More stringent requirements for leaching experiments and the design of impermeable barriers are essential as the permeability coefficient of impermeable materials may increase due to high pollutant concentration in leachate, low pH value of phosphogypsum, and large overburden pressure. Current researches on leachate release and diffusion often fail to replicate actual landfill conditions. Future studies should integrate field-specific parameters such as ambient temperature, rainfall infiltration, and effective stress from overburden weight. Thermal-humid-mechanical (THM) leaching test apparatus is also recommended for multifield coupling investigation. This approach will provide a more comprehensive theoretical understanding of leachate prevention and control in phosphate waste landfills.

Key words

phosphate solid wastes / pollutants / release / diffusion / multi field coupling

Cite this article

Download Citations
CHEN Xia , ZHOU Xian , DENG Shan-shan , et al . State-of-Art and Prospect of Researches on Release and Diffusion of Phosphate Solid Wastes[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(1): 64-73 https://doi.org/10.11988/ckyyb.20231092

References

[1]
刘虹利, 张均, 王永卿, 等. 磷矿固体废弃物资源化利用问题及建议[J]. 矿产综合利用, 2017(1): 6-11.
(LIU Hong-li, ZHANG Jun, WANG Yong-qing, et al. Problems and Proposals of Solid Waste Utilization of Phosphate[J]. Multipurpose Utilization of Mineral Resources, 2017(1): 6-11. (in Chinese))
[2]
邓华, 侯硕旻, 李中军, 等. 磷石膏综合利用现状及展望[J]. 无机盐工业, 2024, 56(1): 1-8, 22.
(DENG Hua, HOU Shuo-min, LI Zhong-jun, et al. Current Situation and Prospect of Comprehensive Utilization of Phosphogypsum[J]. Inorganic Chemicals Industry, 2024, 56(1): 1-8, 22. (in Chinese))
[3]
马一嘉, 武俊杰, 倪天阳. 我国磷矿资源的开发利用现状及进展[J]. 矿冶, 2018, 27(2): 53-56.
(MA Yi-jia, WU Jun-jie, NI Tian-yang. Current Situation and Development of the Exploitation and Utilization of Phosphate Ore Resources in China[J]. Mining and Metallurgy, 2018, 27(2): 53-56. (in Chinese))
[4]
李维, 高辉, 罗英杰, 等. 国内外磷矿资源利用现状、趋势分析及对策建议[J]. 中国矿业, 2015, 24(6):6-10.
(LI Wei, GAO Hui, LUO Ying-jie, et al. Status, Trends and Suggestions of Phosphorus Ore Resources at Home and Abroad[J]. China Mining Magazine, 2015, 24(6): 6-10. (in Chinese))
[5]
张苏江, 易锦俊, 孔令湖, 等. 中国磷矿资源现状及磷矿国家级实物地质资料筛选[J]. 无机盐工业, 2016, 48(2): 1-5, 17.
(ZHANG Su-jiang, YI Jin-jun, KONG Ling-hu, et al. Current Status of Phosphorite-ore Resources in China and Screening for National-class Physical Geological Data of Phopshorite[J]. Inorganic Chemicals Industry, 2016, 48(2): 1-5, 17. (in Chinese))
[6]
孙华峰, 牛福生. 磷矿石分选工艺的研究[J]. 中国矿业, 2010, 19(1): 68-69.
(SUN Hua-feng, NIU Fu-sheng. Research on the Separation Technology of the Phosphorite[J]. China Mining Magazine, 2010, 19(1): 68-69. (in Chinese))
[7]
黄雷, 王君, 廖宗文, 等. 中低品位磷矿直接利用技术研究进展[J]. 化工矿物与加工, 2012, 41(4): 32-37.
(HUANG Lei, WANG Jun, LIAO Zong-wen, et al. Research Progress on Direct Utilization Technology of Mid-low Grade Phosphate Ore[J]. Industrial Minerals & Processing, 2012, 41(4): 32-37. (in Chinese))
[8]
谢英亮, 向鹏成. 矿山低品位矿利用的技术经济分析[J]. 中国资源综合利用, 2001, 19(12): 14-17.
(XIE Ying-liang, XIANG Peng-cheng. Technological Economic Analysis of Mine’s Low Grade Ore Utilization[J]. China Resources Comprehensive Utilization, 2001, 19(12): 14-17. (in Chinese))
[9]
黄德将, 易涛, 张瑜, 等. 湖北宜昌樟村坪地区磷矿开发利用现状、存在问题及解决对策初探[J]. 资源环境与工程, 2018, 32(1): 155-160.
Abstract
通过对宜昌樟村坪地区磷矿开发利用现状进行调查研究,发现存在矿山规模整体偏小以致资源难以有效整合利用、采富弃贫致使资源浪费等现象;同时,地质灾害、环境污染、水资源破坏等矿山地质环境问题也日益突出。为切实加强磷矿资源节约与综合利用,经分析问题成因,并借鉴现有成功经验,从技术方法、监督管理等方面初步探讨相应解决对策,以期为实现该地区磷矿资源可持续发展提供基础参考依据。
(HUANG De-jiang, YI Tao, ZHANG Yu, et al. Preliminarily Analysis of Current Situation of Phosphorite Exploitation, Existence Question and Corresponding Countermeasures in the Zhangcunping Area, Yichang City[J]. Resources Environment & Engineering, 2018, 32(1): 155-160. (in Chinese))
[10]
BACON J R, DINEV N S. Isotopic Characterisation of Lead in Contaminated Soils from the Vicinity of a Non-ferrous Metal Smelter near Plovdiv, Bulgaria[J]. Environmental Pollution, 2005, 134(2): 247-255.
Soil samples from the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria contained very high concentrations of cadmium, lead and zinc (up to 140, 4900 and 5900 mg kg(-1), respectively). A roadside soil in a relatively uncontaminated area also contained high concentrations of the same metals (24, 1550 and 1870 mg kg(-1), respectively) indicating that the transport of ores could be a source of contamination. Even though the lead isotope ratios in all the samples fell within a very narrow range (for example, 1.186-1.195 for (206)Pb/(207)Pb), the samples could be differentiated into three distinct groups: ores ((206)Pb/(207)Pb and (208)Pb/(207)Pb ratios of 1.1874-1.1884 and 2.4755-2.4807, respectively), current deposition (1.1864 and 2.4704-2.4711, respectively) and local background (1.1927-1.1951 and 2.4772-2.4809, respectively). Although most of the current deposition has its origin in the ores used at the smelter, up to 12% could be from other sources such as petrol lead.
[11]
张端淼, 陈骏峰, 庞威, 等. 宜昌市夷陵区磷矿开发区矿山地质环境问题及防治对策[J]. 资源环境与工程, 2014, 28(2):184-187.
Abstract
对宜昌市夷陵区磷矿开发区范围内存在的主要矿山地质问题进行了归纳总结和分析研究,并提出了防治对策及建议。
(ZHANG Duan-miao, CHEN Jun-feng, PANG Wei, et al. Mine Geological Environment and Countermeasures about Phosphate Ore Development Zone in Yiling District[J]. Resources Environment & Engineering, 2014, 28(2): 184-187. (in Chinese))
[12]
杨威杉, 於方, 赵丹, 等. 滇池周边磷矿复垦区土壤重金属污染特征研究[J]. 生态环境学报, 2018, 27(6):1145-1152.
(YANG Wei-shan, YU Fang, ZHAO Dan, et al. Characteristics of Heavy Metals in Reclaimed Soils of a Phosphorite-mining Area around Dianchi Lake[J]. Ecology and Environmental Sciences, 2018, 27(6): 1145-1152. (in Chinese))
[13]
COCHRANE B H W, REICHERT J M, ELTZ F L F, et al. Controlling Soil Erosion and Runoff with Polyacrylamide and Phosphogypsum on Subtropical Soil[J]. Transactions of the ASAE, 2005, 48(1): 149-154.
[14]
叶学东. 2016年我国磷石膏利用现状、存在问题及建议[J]. 磷肥与复肥, 2017, 32(7): 1-3.
(YE Xue-dong. Present Status, Existing Problems and Suggestions of Phosphogypsum Utilization in China in 2016[J]. Phosphate & Compound Fertilizer, 2017, 32(7): 1-3. (in Chinese))
[15]
国亚非, 赵泽阳, 张正虎, 等. 磷石膏堆存安全风险现状分析及治理对策[J]. 现代矿业, 2022, 38(4): 215-218.
(GUO Ya-fei, ZHAO Ze-yang, ZHANG Zheng-hu, et al. Current Situation Analysis and Countermeasures of Phosphogypsum Storage Safety Risk[J]. Modern Mining, 2022, 38(4): 215-218. (in Chinese))
[16]
CHEN X, FANG K, YANG H, et al. Hydration Kinetics of Phosphorus Slag-cement Paste[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2011, 26(1): 142-146.
[17]
张纬, 薛强, 刘磊, 等. 季节性气候变化对填埋场温度分布影响的研究[J]. 地下空间与工程学报, 2007, 3(增刊2): 1541-1544, 1573.
(ZHANG Wei, XUE Qiang, LIU Lei, et al. Study on the Influence of Seasonal Climate Change on the Temperature Distribution of Landfill Site[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(Supp.2): 1541-1544, 1573. (in Chinese))
[18]
严嘉璐, 谌书, 王彬, 等. 模拟降雨下磷石膏堆场地表径流的磷污染研究[J]. 环境科学与技术, 2020, 43(2):170-176.
(YAN Jia-lu, CHEN Shu, WANG Bin, et al. Characteristics of Phosphorus Contaminants Collected from Phosphogypsum Stack in Surface Runoff under Different Rainfall Conditions[J]. Environmental Science & Technology, 2020, 43(2): 170-176. (in Chinese))
[19]
姜利国, 梁冰, 张梦舟, 等. 持续淋溶对磷矿废石磷素浸出特性影响的研究[J]. 非金属矿, 2015, 38(6): 53-55, 68.
(JIANG Li-guo, LIANG Bing, ZHANG Meng-zhou, et al. Experiments on Phosphorus Leaching Characteristics of the Phosphate Waste Rock in Continuous Leaching Condition[J]. Non-Metallic Mines, 2015, 38(6): 53-55, 68. (in Chinese))
[20]
任红岗, 赵旭林, 王海军, 等. 宜昌磷矿采矿活动对黄柏河东支水环境影响及对策[J]. 有色金属(矿山部分), 2018, 70(1):90-95.
(REN Hong-gang, ZHAO Xu-lin, WANG Hai-jun, et al. Influence and Countermeasures of Mining Activities in Yichang Phosphate Mine on Water Environment of Huangbo River’s East Branch[J]. Nonferrous Metals(Mining Section), 2018, 70(1):90-95. (in Chinese))
[21]
张梦舟, 徐曾和, 梁冰. 三峡库区香溪河流域磷矿废石磷素释放特性研究[J]. 中国环境科学, 2016, 36(3):840-848.
(ZHANG Meng-zhou, XU Zeng-he, LIANG Bing. Phosphorus Release from Phosphate Waste Rocks Deposited in Xiangxi River Watershed of Three Gorges Reservoir[J]. China Environmental Science, 2016, 36(3): 840-848. (in Chinese))
[22]
陈永松, 毛健全. 磷石膏中污染物可溶磷的溶出特性实验研究[J]. 贵州工业大学学报(自然科学版), 2007, 36(1):99-102.
(CHEN Yong-song, MAO Jian-quan. Study on the Leaching Properties of Soluble Phosphorus in Phosphogypsum[J]. Journal of Guizhou University of Technology (Natural Science Edition), 2007, 36(1): 99-102. (in Chinese))
[23]
王宝, 董兴玲. 不同有效应力下矿山渗滤液对土工合成黏土衬垫渗透特性影响的试验研究[J]. 岩土力学, 2017, 38(5): 1350-1358.
(WANG Bao, DONG Xing-ling. Hydraulic Conductivity of Mine Leachate through Geosynthetic Clay Liners under Different Effective Stresses[J]. Rock and Soil Mechanics, 2017, 38(5): 1350-1358. (in Chinese))
[24]
朱雪千. 四川某磷石膏堆场磷、氟浸出规律及磷在地下水中迁移规律研究[D]. 成都: 成都理工大学, 2019.
(ZHU Xue-qian. Study on the Leaching Law of Phosphorus and Fluorine and the Migration Law of Phosphorus in Groundwater in a Phosphogypsum Yard in Sichuan[D]. Chengdu: Chengdu University of Technology, 2019. (in Chinese))
[25]
邹莲花, 王赣江, 葛鑫. 金属矿山固体废物的鉴别与处置方法探讨[J]. 有色冶金设计与研究, 2007, 28(增刊1):50-54.
(ZOU Lian-hua, WANG Gan-jiang, GE Xin. Identification of Solid Wastes from Metal Mines and Discussions of Their Disposal Methods[J]. Nonferrous Metals Engineering & Research, 2007, 28(Supp.1): 50-54. (in Chinese))
[26]
蒙明富, 刘宁, 姜平. 初始含水率及固结特性对湿法磷石膏堆场渗滤液产量的影响[J]. 环境工程学报, 2016, 10(4): 2035-2040.
(MENG Ming-fu, LIU Ning, JIANG Ping. Impacts of Initial Moisture Content and Consolidation Character on Leachate Generation of Wet Phosphogypsum Stack[J]. Chinese Journal of Environmental Engineering, 2016, 10(4): 2035-2040. (in Chinese))
[27]
周自伟, 李世吉. 某磷石膏库水量平衡分析方法研究[J]. 现代矿业, 2021, 37(9): 263-266.
(ZHOU Zi-wei, LI Shi-ji. Study on Water Balance Analysis Method of a Phosphogypsum Reservoir[J]. Modern Mining, 2021, 37(9): 263-266. (in Chinese))
[28]
郑文成, 贾洪彪, 郭明, 等. 平坝磷石膏堆场渗漏分析与污染防治对策[J]. 中国岩溶, 2010, 29(1): 75-80.
(ZHENG Wen-cheng, JIA Hong-biao, GUO Ming, et al. Analysis on Leakage and Pollution Prevention Methods of Phosphogypsum Sit in Pingba[J]. Carsologica Sinica, 2010, 29(1): 75-80. (in Chinese))
[29]
李建雄, 张庆安, 高伟. 磷石膏的安全环保堆存及综合利用[J]. 化肥设计, 2018, 56(3): 58-62.
(LI Jian-xiong, ZHANG Qing-an, GAO Wei. The Safe and Environment-friendly Stockpiling and Comprehensive Utilization of Phosphorus Gypsum[J]. Chemical Fertilizer Design, 2018, 56(3): 58-62. (in Chinese))
[30]
姜元勇, 徐曾和, 李艳松, 等. 多孔地质材料中的反应扩散与孔隙结构演化: Ⅰ.理论分析与数值模拟[J]. 中南大学学报(自然科学版), 2014, 45(10): 3561-3570.
(JIANG Yuan-yong, XU Zeng-he, LI Yan-song, et al. Reaction-diffusion and Pore Evolution in Porous Geological Material: Ⅰ.Theoretical Analysis and Numerical Simulation[J]. Journal of Central South University (Science and Technology), 2014, 45(10): 3561-3570. (in Chinese))
[31]
杨钊, 夏强, 张强, 等. 尾矿库堆积过程污染物运移模拟分析[J]. 科学技术与工程, 2016, 16(33): 323-329.
(YANG Zhao, XIA Qiang, ZHANG Qiang, et al. Simulation of Contaminant Transport in Tailings Accumulation Process[J]. Science Technology and Engineering, 2016, 16(33): 323-329. (in Chinese))
[32]
别琳琳, 张莉, 周晓华, 等. 湖北某磷石膏堆场渗滤液产生量的预测分析[J]. 武汉工程大学学报, 2022, 44(2): 180-185.
(BIE Lin-lin, ZHANG Li, ZHOU Xiao-hua, et al. Prediction and Analysis of Leachate Production in Phosphogypsum Storage Field in Hubei Province[J]. Journal of Wuhan Institute of Technology, 2022, 44(2): 180-185. (in Chinese))
[33]
DAWOOD I, AUBERTIN M. Effect of Dense Material Layers on Unsaturated Water Flow Inside a Large Waste Rock Pile: a Numerical Investigation[J]. Mine Water and the Environment, 2014, 33(1): 24-38.
[34]
张梦舟, 徐曾和, 梁冰. 香溪河流域磷矿废渣堆堑体磷素释放量预测[J]. 环境化学, 2016, 35(7):1390-1397.
(ZHANG Meng-zhou, XU Zeng-he, LIANG Bing. Evaluation of Phosphorus Release from Phosphate Waste Rock Pile Deposited in Xiangxi River Watershed[J]. Environmental Chemistry, 2016, 35(7):1390-1397. (in Chinese))
[35]
张科正, 陈舟, 陈长生, 等. 岩溶区某磷石膏堆场地下水渗流与污染物运移数值模拟[J]. 中国煤炭地质, 2018, 30(5): 46-52.
(ZHANG Ke-zheng, CHEN Zhou, CHEN Chang-sheng, et al. Numerical Simulation of Groundwater Seepage and Pollutant Migration in a Karst Area Phosphogypsum Dump[J]. Coal Geology of China, 2018, 30(5): 46-52. (in Chinese))
[36]
薛强, 赵颖, 刘磊, 等. 垃圾填埋场灾变过程的温度-渗流-应力-化学耦合效应研究[J]. 岩石力学与工程学报, 2011, 30(10): 1970-1988.
(XUE Qiang, ZHAO Ying, LIU Lei, et al. Study of Thermo-Hydro-Mechanical-Chemical Coupling Effect of Catastrophe Process of Landfill[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 1970-1988. (in Chinese))
[37]
薛红琴, 速宝玉. 垃圾填埋场防渗体缺陷对污染控制的影响[J]. 中国科学技术大学学报, 2004, 34(增刊1):483-487.
(XUE Hong-qin, SU Bao-yu. Impact of Landfill Containment Body Defects on Pollution Control[J]. Journal of University of Science and Technology of China, 2004, 34(Supp. 1): 483-487. (in Chinese))
[38]
薛强, 徐应明, 刘建军. 降雨入渗对填埋场土壤水分动力学行为的影响[J]. 辽宁工程技术大学学报, 2004, 23(5): 618-620.
(XUE Qiang, XU Ying-ming, LIU Jian-jun. Effect of Rainfall Infiltration on Moisture Distribution in Solid Waste Landfill[J]. Journal of Liaoning Technical University (Natural Science), 2004, 23(5): 618-620. (in Chinese))
[39]
LANGE K, ROWE R K, JAMIESON H. The Potential Role of Geosynthetic Clay Liners in Mine Water Treatment Systems[J]. Geotextiles and Geomembranes, 2010, 28(2): 199-205.
[40]
刘长礼, 张云, 王秀艳, 等. 适合国情的垃圾填埋场衬垫系统[J]. 工程地质学报, 2000, 8(1): 118-122.
(LIU Chang-li, ZHANG Yun, WANG Xiu-yan, et al. A Lining System of Waste Landfilling Site Adequate for Current Situation in China[J]. Journal of Engineering Geology, 2000, 8(1): 118-122. (in Chinese))
[41]
卢应发, 谢文良, 陈朱蕾, 等. 垃圾卫生填埋中的渗透问题及其对策[J]. 华中科技大学学报(城市科学版), 2007, 24(3): 25-27.
(LU Ying-fa, XIE Wen-liang, CHEN Zhu-lei, et al. Seepage and Treatment of Sanitary Landfill of Refuse[J]. Journal of Huazhong University of Science and Technology (Urban Science Edition), 2007, 24(3): 25-27. (in Chinese))
[42]
李亚园, 张勋忠, 孙娉娉, 等. 磷石膏渗滤液对黏土防渗层的影响研究[J]. 环境工程, 2014, 32(增刊1):758-761.
(LI Ya-yuan, ZHANG Xun-zhong, SUN Ping-ping, et al. Research into Effect of Phosphogypsum Leachate on Clay Seepage Control Layer[J]. Environmental Engineering, 2014, 32(Supp.1): 758-761. (in Chinese))
[43]
董军, 赵勇胜, 杨继东, 等. 沸石改性天然粘土防渗层性能研究[J]. 环境科学与技术, 2005, 28(4): 92-94, 120.
(DONG Jun, ZHAO Yong-sheng, YANG Ji-dong, et al. Study on Performance of Zeolites Modified Clay-liners[J]. Environmental Science and Technology, 2005, 28(4): 92-94, 120. (in Chinese))
[44]
陈延君, 王红旗, 赵勇胜. 改性膨润土作为防渗层材料的性能研究及影响因素分析[J]. 环境科学研究, 2006, 19(2): 90-94.
(CHEN Yan-jun, WANG Hong-qi, ZHAO Yong-sheng. Study on Modified Bentonite Performance and the Analysis of Its Influencing Factors[J]. Research of Environmental Sciences, 2006, 19(2): 90-94. (in Chinese))
[45]
王秀艳, 刘长礼, 张云, 等. 废物处置场地下水污染地质控制方法新探索[J]. 农业环境科学学报, 2004, 23(6): 1207-1211.
(WANG Xiu-yan, LIU Chang-li, ZHANG Yun, et al. A New Probe in Preventing Landfill from Pollution by Harmful Wastes on Groundwater[J]. Journal of Agro-Environmental Science, 2004, 23(6): 1207-1211. (in Chinese))
[46]
万勇, 薛强, 赵立业, 等. 干湿循环对填埋场压实黏土盖层渗透系数影响研究[J]. 岩土力学, 2015, 36(3): 679-686, 693.
(WAN Yong, XUE Qiang, ZHAO Li-ye, et al. Effects of Wetting-drying Cycles on Permeability of Compacted Clay Cover at Landfill Site[J]. Rock and Soil Mechanics, 2015, 36(3): 679-686, 693. (in Chinese))
[47]
李志斌, 徐超. 竖向应力作用下GCL的膨胀特性和渗透性能[J]. 岩土工程学报, 2007, 29(12): 1876-1880.
(LI Zhi-bin, XU Chao. Swelling Characteristics and Hydraulic Properties of GCLS under Vertical Stress[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1876-1880. (in Chinese))
[48]
NAKA A, KATSUMI T, INUI T, et al. Evaluation of Mineral Barriers against Acid Rock Drainage[J]. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 2012, 43: 35-42.
[49]
MAZZIERI F, DI EMIDIO G, FRATALOCCHI E, et al. Permeation of Two GCLS with an Acidic Metal-rich Synthetic Leachate[J]. Geotextiles and Geomembranes, 2013, 40: 1-11.
[50]
高金福. 高密度聚乙烯防渗膜在磷石膏堆场回水库防渗工程中的应用[J]. 肥料与健康, 2023, 50(2):64-66.
(GAO Jin-fu. Application of High-density Polyethylene Anti-seepage Membrane in Anti-seepage Engineering of Phosphogypsum Storage Yard Backwater Reservoir[J]. Fertilizer & Health, 2023, 50(2): 64-66. (in Chinese))
[51]
王国清, 顾正聪. 磷石膏渣场闭库措施浅析[J]. 环境科学导刊, 2016, 35(增刊1): 95-97.
(WANG Guo-qing, GU Zheng-cong. Measures of Closing Gypsum Stack[J]. Environmental Science Survey, 2016, 35(Supp.1): 95-97. (in Chinese))
PDF(1831 KB)

Accesses

Citation

Detail

Sections
Recommended

/