Inhibiting the Growth of Microcystis aeruginosa by H2O2 Generated in the Electrolysis Process by Low-Amperage Electric Current

ZHANG Yu-ting, LIN Li, JIA Di, DONG Lei, PAN Xiong, LIU Min, ZHAO Liang-yuan

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (9) : 24-31.

PDF(6349 KB)
PDF(6349 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (9) : 24-31. DOI: 10.11988/ckyyb.20220306
Water Environment and Water Ecology

Inhibiting the Growth of Microcystis aeruginosa by H2O2 Generated in the Electrolysis Process by Low-Amperage Electric Current

  • ZHANG Yu-ting1,2, LIN Li1,2, JIA Di1,2, DONG Lei1,2, PAN Xiong1,2, LIU Min1,2, ZHAO Liang-yuan1,2
Author information +
History +

Abstract

Platinum titanium served as the anode, while a carbon black polytetrafluoroethylene (C/PTFE) gas diffusion electrode was utilized as the cathode in order to facilitate the production of H2O2 through low-amperage electrolysis, with the aim of inhibiting the growth of Microcystis aeruginosa. Through a series of experimental investigations involving varying electrolysis time, current density, and gas flow, the optimal conditions for inhibiting Microcystis aeruginosa were determined. Specifically, the optimal configuration involved the electrolysis of 100 mL of 5×105 cells/mL algae solution at a current density of 10 mA/cm2 and a gas flow rate of 0.4 L/min for a duration of 60 minutes. Following electrolysis, the optical density (OD680) of the algae cells decreased from 0.035 to 0.003, indicating the complete inhibition of algae cell growth. Additionally, the measurement of chlorophyll fluorescence parameters, such as Fv/Fm, Y(Ⅱ), and Y(NO), demonstrated the substantial disruption to the photosynthetic mechanism of the algae, further indicating the complete decay of the algae population. The concentration of H2O2 generated during electrolysis was determined to be 79 mg/L. Furthermore, even after six cycles of reuse, the C/PTFE cathode maintained 66% (52 mg/L) of the initial H2O2 concentration, highlighting the excellent stability and promising application potential of the C/PTFE electrode. This study presents a novel approach to effectively inhibit cyanobacterial blooms through low-amperage electrolysis, offering a new avenue for remediation.

Key words

gas diffusion electrode / low-amperage electric current / hydrogen peroxide / microcystis aeruginosa / inhibiting effect

Cite this article

Download Citations
ZHANG Yu-ting, LIN Li, JIA Di, DONG Lei, PAN Xiong, LIU Min, ZHAO Liang-yuan. Inhibiting the Growth of Microcystis aeruginosa by H2O2 Generated in the Electrolysis Process by Low-Amperage Electric Current[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(9): 24-31 https://doi.org/10.11988/ckyyb.20220306

References

[1] WESTRICK J A, SZLAG D C, SOUTHWELL B J, et al. A Review of Cyanobacteria and Cyanotoxins Removal/Inactivation in Drinking Water Treatment[J]. Analytical and Bioanalytical Chemistry, 2010, 397(5): 1705-1714.
[2] 张 旭, 崔娜欣, 周 丽, 等. B-N-TiO2/Ag3PO4复合光催化材料的制备及光催化降解有害藻的研究[J]. 环境科学研究, 2021, 34(11): 2645-2654.
[3] 甘南琴, 魏 念, 宋立荣. 微囊藻毒素生物学功能研究进展[J]. 湖泊科学, 2017, 29(1): 1-8.
[4] 雷 振, 陈 荣, 王 帅, 等. 铜胁迫对铜绿微囊藻生长及产毒素的影响[J]. 环境科学学报, 2017, 37(5): 1993-1998.
[5] LI P, ZHANG L, WANG W, et al. Rapid Catalytic Microwave Method to Damage Microcystis Aeruginosa with FeCl3-Loaded Active Carbon[J]. Environmental Science & Technology, 2011, 45(10): 4521-4526.
[6] 王寿兵, 徐紫然, 张 洁. 大型湖库富营养化蓝藻水华防控技术发展述评[J]. 水资源保护, 2016, 32(4): 88-99.
[7] ANTONIOU M G, DE LA CRUZ A A, DIONYSIOU D D. Cyanotoxins: New Generation of Water Contaminants[J]. Journal of Environmental Engineering, 2005, 131(9): 1239-1243.
[8] BARRINGTON D J, GHADOUANI A. Application of Hydrogen Peroxide for the Removal of Toxic Cyanobacteria and other Phytoplankton from Wastewater[J]. Environmental Science & Technology, 2008, 42(23): 8916-8921.
[9] FAN F, SHI X, ZHANG M, et al. Comparison of Algal Harvest and Hydrogen Peroxide Treatment in Mitigating Cyanobacterial Blooms via an in Situ Mesocosm Experiment[J]. Science of the Total Environment, 2019, 694: 133721.
[10] QIAN H,YU S,SUN Z,et al.Effects of Copper Sulfate,Hydrogen Peroxide and N-Phenyl-2-Naphthylamine on Oxidative Stress and the Expression of Genes Involved Photosynthesis and Microcystin Disposition in Microcystis Aeruginosa[J].Aquatic Toxicology,2010,99(3):405-412.
[11] LIANG W, QU J, CHEN L, et al. Inactivation of Microcystis Aeruginosa by Continuous Electrochemical Cycling Process in Tube Using Ti/RuO2 Electrodes[J]. Environmental Science & Technology, 2005, 39(12): 4633-4639.
[12] 林 莉, 李青云, 黄 茁, 等. 微电流电解对铜绿微囊藻的持续抑制研究[J]. 华中科技大学学报(自然科学版), 2012, 40(10): 87-90.
[13] 冯 璁, 林 莉, 李青云. 氯离子浓度与电流密度对电解抑制铜绿微囊藻生长的影响[J]. 长江科学院院报, 2015, 32(6): 53-58.
[14] LIN L, MENG X, LI Q, et al. Electrochemical Oxidation of Microcystis Aeruginosa Using a Ti/RuO2 Anode: Contributions of Electrochemically Generated Chlorines and Hydrogen Peroxide[J]. Environmental Science and Pollution Research, 2018, 25(28): 27924-27934.
[15] DITTMEYER R, GRUNWALDT J-D, PASHKOVA A. A Review of Catalyst Performance and Novel Reaction Engineering Concepts in Direct Synthesis of Hydrogen Peroxide[J]. Catalysis Today, 2015, 248: 149-159.
[16] LIANG D, LI N, AN J, et al. Fenton-Based Technologies as Efficient Advanced Oxidation Processes for Microcystin-LR Degradation[J]. Science of the Total Environment, 2021, 753: 141809-141825.
[17] ZHOU W,MENG X,GAO J,et al. Hydrogen Peroxide Generation from O2 Electro Reduction for Environmental Remediation: A State-of-the-Art Review[J]. Chemosphere,2019,225(6):588-607.
[18] PÉREZ J F, GALIA A, RODRIGO M A, et al. Effect of Pressure on the Electrochemical Generation of Hydrogen Peroxide in Undivided Cells on Carbon Felt Electrodes[J]. Electrochimica Acta, 2017, 248: 169-177.
[19] MURAWSKI E, KANANIZADEH N, LINDSAY S, et al. Decreased Gas-Diffusion Electrode Porosity Due to Increased Electrocatalyst Loading Leads to Diffusional Limitations in Cathodic H2O2 Electrosynthesis[J]. Journal of Power Sources, 2021, 481: 228992-229001.
[20] LU X,ZHOU M,LI Y,et al. Improving the Yield of Hydrogen Peroxide on Gas Diffusion Electrode Modified with Tert-Butyl-Anthraquinone on Different Carbon Support[J]. Electrochimica Acta, 2019, 320: 134552-134565.
[21] ZHOU W, MENG X, DING Y, et al. “Self-Cleaning” Electrochemical Regeneration of Dye-Loaded Activated Carbon[J]. Electrochemistry Communications, 2019, 100(3): 85-89.
[22] 林 莉, 冯 璁, 李青云, 等. 微电流电解对铜绿微囊藻(Microcystis aeruginosa)叶绿素荧光特性的影响[J]. 湖泊科学, 2015, 27(5): 873-879.
[23] MA M, LIU R, LIU H, et al. Effects and Mechanisms of Pre-chlorination on Microcystis Aeruginosa Removal by Alum Coagulation: Significance of the Released Intracellular Organic Matter[J]. Separation and Purification Technology, 2012, 86: 19-25.
[24] SELLERS R M.Spectrophotometric Determination of Hydrogen Peroxide Using Potassium Titanium(IV) Oxalate[J]. Analyst, 1980, 105(1255): 950-954.
[25] 刘宫昊. 低Pt含量Pt/C催化气体扩散电极制备及其在锌电积中的应用[D]. 北京: 北京化工大学:46-48.
[26] TIAN J, OLAJUYIN A M, MU T, et al. Efficient Degradation of Rhodamine B Using Modified Graphite Felt Gas Diffusion Electrode by Electro-Fenton Process[J]. Environmental Science and Pollution Research, 2016, 23(12): 11574-11583.
[27] XU Y, YANG J, OU M, et al. Study of Microcystis Aeruginosa Inhibition by Electrochemical Method[J]. Biochemical Engineering Journal, 2007, 36(3): 215-220.
[28] SUN H, LIU C, GAO X J, et al. Oxygen Reduction in PEM Fuel Cell Based on Molecular Simulation[J]. Advanced Materials Research, 2010, 156/157: 432-438.
[29] 王志韩, 宋浩然, 李朝林, 等. PTFE/C三相电极氧阴极还原法生产过氧化氢[J]. 环境工程学报, 2015, 9(2):787-794.
[30] LU Y, LIU G, LUO H, et al. Efficient In-situ Production of Hydrogen Peroxide Using a Novel Stacked Electrosynthesis Reactor[J]. Electrochimica Acta, 2017, 248: 29-36.
[31] CHEN Z, DONG H, YU H, et al. In-situ Electrochemical Flue Gas Desulfurization via Carbon Black-Based Gas Diffusion Electrodes: Performance, Kinetics and Mechanism[J]. Chemical Engineering Journal,2017,307:553-561.
[32] YU X, ZHOU M, REN G, et al. A Novel Dual Gas Diffusion Electrodes System for Efficient Hydrogen Peroxide Generation Used in Electro-Fenton[J]. Chemical Engineering Journal, 2015, 263: 92-100.
[33] CHEN C, YANG Z, KONG F, et al. Growth, Physiochemical and Antioxidant Responses of Overwintering Benthic Cyanobacteria to Hydrogen Peroxide[J]. Environmental Pollution, 2016, 219(12): 649-655.
[34] 邱丽佳, 张君枝, 张艳娜, 等. H2O2氧化铜绿微囊藻致嗅物质及灭藻效应研究[J]. 环境科学学报, 2017, 37(3): 954-961.
[35] 孙玉营, 吴进怡, 柴 柯,等. 高压脉冲电场结合炭黑复合涂层对硅藻活性的影响研究[J]. 中国材料进展, 2017, 36(4):301-306.
[36] SAMUILOV V D, TIMOFEEV K N, SINITSYN S V, et al. H2O2-Induced Inhibition of Photosynthetic O2 Evolution by Anabaena Variabilis Cells[J]. Biochemistry (Moscow), 2004, 69(8): 926-933.
[37] BOUCHARD J N, ROY S, CAMPBELL D A. UVB Effects on the Photosystem II-D1 Protein of Phytoplankton and Natural Phytoplankton Communities[J]. Photochemistry and Photobiology, 2006, 82(4): 936-951.
[38] 丁丽飞, 李海燕, 白敏冬, 等. 羟基自由基快速杀灭典型水华藻的研究[J]. 中国环境科学, 2017, 37(7):2633-2638.
PDF(6349 KB)

Accesses

Citation

Detail

Sections
Recommended

/