Infiltration Grouting Mechanism in Porous Media Based on Fractal Theory

HOU Xiao-ping, MO Hao, ZHAO Wei-quan, HUANG Yong

Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (9) : 106-113.

PDF(1092 KB)
PDF(1092 KB)
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (9) : 106-113. DOI: 10.11988/ckyyb.20230536
Rock-Soil Engineering

Infiltration Grouting Mechanism in Porous Media Based on Fractal Theory

Author information +
History +

Abstract

To investigate the infiltration grouting mechanism of Bingham fluid in porous media, we derived formulas for calculating the apparent velocity of infiltration diffusion and the spherical infiltration grouting diffusion distance of Bingham fluid in porous media based on the fractal theory, the capillary model, and the rheological equation of Bingham fluid. We compared and validated the theoretical formulas against existing models and laboratory grouting tests. The results indicate that the diffusion radius of the grout calculated using the fractal theory-based formulas aligns more closely with experimental data compared to conventional Bingham fluid infiltration grouting formulas. These findings offer valuable theoretical support for practical grouting applications in porous media strata.

Key words

porous media / Bingham fluid / fractal theory / infiltration grouting / apparent velocity / diffusion distance

Cite this article

Download Citations
HOU Xiao-ping , MO Hao , ZHAO Wei-quan , et al. Infiltration Grouting Mechanism in Porous Media Based on Fractal Theory[J]. Journal of Yangtze River Scientific Research Institute. 2024, 41(9): 106-113 https://doi.org/10.11988/ckyyb.20230536

References

[1]
YOON J, EL MOHTAR C S. A Filtration Model for Evaluating Maximum Penetration Distance of Bentonite Grout through Granular Soils[J]. Computers and Geotechnics, 2015, 65: 291-301.
[2]
《岩土注浆理论与工程实例》协作组. 岩土注浆理论与工程实例[M]. 北京: 科学出版社, 2001.
(Cooperation Team of Compiling Geotechnical Grouting Theory and Engineering Examples. Geotechnical Grouting Theory and Engineering Examples[M]. Beijing: Science Press, 2001. (in Chinese))
[3]
SAADA Z, CANOU J, DORMIEUX L, et al. Modelling of Cement Suspension Flow in Granular Porous Media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(7): 691-711.
[4]
KIM Y S, WHITTLE A J. Particle Network Model for Simulating the Filtration of a Microfine Cement Grout in Sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(2): 224-236.
[5]
李术才, 冯啸, 刘人太, 等. 考虑渗滤效应的砂土介质注浆扩散规律研究[J]. 岩土力学, 2017, 38(4): 925-933.
(LI Shu-cai, FENG Xiao, LIU Ren-tai, et al. Diffusion of Grouting Cement in Sandy Soil Considering Filtration Effect[J]. Rock and Soil Mechanics, 2017, 38(4): 925-933. (in Chinese))
[6]
杨秀竹, 王星华, 雷金山. 宾汉体浆液扩散半径的研究及应用[J]. 水利学报, 2004, 35(6): 75-79.
(YANG Xiu-zhu, WANG Xing-hua, LEI Jin-shan. Study on Grouting Diffusion Radius of Bingham Fluids[J]. Journal of Hydraulic Engineering, 2004, 35(6): 75-79. (in Chinese))
[7]
杨志全, 侯克鹏, 郭婷婷, 等. 黏度时变性宾汉体浆液的柱-半球形渗透注浆机制研究[J]. 岩土力学, 2011, 32(9): 2697-2703.
(YANG Zhi-quan, HOU Ke-peng, GUO Ting-ting, et al. Study of Column-hemispherical Penetration Grouting Mechanism Based on Bingham Fluid of Time-dependent Behavior of Viscosity[J]. Rock and Soil Mechanics, 2011, 32(9): 2697-2703. (in Chinese))
[8]
杨志全, 牛向东, 侯克鹏, 等. 流变参数时变性幂律型水泥浆液的柱形渗透注浆机制研究[J]. 岩石力学与工程学报, 2015, 34(7): 1415-1425.
(YANG Zhi-quan, NIU Xiang-dong, HOU Ke-peng, et al. Columnar Diffusion of Cement Grout with Time Dependent Rheological Parameters[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7): 1415-1425. (in Chinese))
[9]
张聪, 梁经纬, 张箭, 等. 基于脉动注浆的宾汉流体渗透扩散机制研究[J]. 岩土力学, 2018, 39(8): 2740-2746, 2754.
(ZHANG Cong, LIANG Jing-wei, ZHANG Jian, et al. Mechanism of Bingham Fluid Permeation and Diffusion Based on Pulse Injection[J]. Rock and Soil Mechanics, 2018, 39(8): 2740-2746, 2754. (in Chinese))
[10]
张庆松, 王洪波, 刘人太, 等. 考虑浆液扩散路径的多孔介质渗透注浆机理研究[J]. 岩土工程学报, 2018, 40(5): 918-924.
(ZHANG Qing-song, WANG Hong-bo, LIU Ren-tai, et al. Infiltration Grouting Mechanism of Porous Media Considering Diffusion Paths of Grout[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 918-924. (in Chinese))
[11]
路乔, 杨智超, 杨志全, 等. 考虑扩散路径的宾汉姆流体渗透注浆机制[J]. 岩土力学, 2022, 43(2): 385-394.
(LU Qiao, YANG Zhi-chao, YANG Zhi-quan, et al. Penetration Grouting Mechanism of Binham Fluid Considering Diffusion Paths[J]. Rock and Soil Mechanics, 2022, 43(2): 385-394. (in Chinese))
[12]
樊贵超, 钟登华, 任炳昱, 等. 基于分形理论的坝基裂隙岩体注灰量与导水率关系研究[J]. 水利学报, 2017, 48(5): 576-587.
(FAN Gui-chao, ZHONG Deng-hua, REN Bing-yu, et al. Research on the Relationship between Cement Take and Transmissivity of Fractured Rocks under Dam Foundation Based on Fractal Theory[J]. Journal of Hydraulic Engineering, 2017, 48(5): 576-587. (in Chinese))
[13]
CAO H T, YI X Y, LU Y, et al. A Fractal Analysis of Fracture Conductivity Considering the Effects of Closure Stress[J]. Journal of Natural Gas Science and Engineering, 2016, 32: 549-555.
[14]
SHEN Y, XU P, QIU S, et al. A Generalized Thermal Conductivity Model for Unsaturated Porous Media with Fractal Geometry[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119540.
[15]
KATZ A J, THOMPSON A H. Fractal Sandstone Pores: Implications for Conductivity and Pore Formation[J]. Physical Review Letters, 1985, 54(12): 1325-1328.
[16]
YU B, LI J. Some Fractal Characters of Porous Media[J]. Fractals, 2001, 9(3): 365-372.
[17]
YU B, CHENG P. A Fractal Permeability Model for Bi-dispersed Porous Media[J]. International Journal of Heat and Mass Transfer, 2002, 45(14): 2983-2993.
[18]
阮文军. 基于浆液粘度时变性的岩体裂隙注浆扩散模型[J]. 岩石力学与工程学报, 2005, 24(15): 2709-2714.
(RUAN Wen-jun. Spreading Model of Grouting in Rock Mass Fissures Based on Time-dependent Behavior of Viscosity of Cement-based Grouts[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2709-2714. (in Chinese))
[19]
张连震, 张庆松, 刘人太, 等. 考虑浆液黏度时空变化的速凝浆液渗透注浆扩散机制研究[J]. 岩土力学, 2017, 38(2): 443-452.
(ZHANG Lian-zhen, ZHANG Qing-song, LIU Ren-tai, et al. Penetration Grouting Mechanism of Quick Setting Slurry Considering Spatiotemporal Variation of Viscosity[J]. Rock and Soil Mechanics, 2017, 38(2): 443-452. (in Chinese))
[20]
YUN M, YU B, LU J, et al. Fractal Analysis of Herschel-Bulkley Fluid Flow in Porous Media[J]. International Journal of Heat and Mass Transfer, 2010, 53(17/18): 3570-3574.
[21]
员美娟. 多孔介质中流体的若干流动特性研究[D]. 武汉: 华中科技大学, 2008.
(YUN Mei-juan. Study on some Flow Characteristics of Fluid in Porous Media[D]. Wuhan: Huazhong University of Science and Technology, 2008. (in Chinese))
[22]
MIAO T, YANG S, LONG Z, et al. Fractal Analysis of Permeability of Dual-porosity Media Embedded with Random Fractures[J]. International Journal of Heat and Mass Transfer, 2015, 88: 814-821.
[23]
钟祖良, 别聪颖, 范一飞, 等. 土石混合体注浆扩散机制及影响因素试验研究[J]. 岩土力学, 2019, 40(11): 4194-4202.
(ZHONG Zu-liang, BIE Cong-ying, FAN Yi-fei, et al. Experimental Study on Grouting Diffusion Mechanism and Influencing Factors of Soil-rock Mixture[J]. Rock and Soil Mechanics, 2019, 40(11): 4194-4202. (in Chinese))
[24]
WANG S, HUANG Y, CIVAN F. Experimental and Theoretical Investigation of the Zaoyuan Field Heavy Oil Flow through Porous Media[J]. Journal of Petroleum Science and Engineering, 2006, 50(2): 83-101.
[25]
XU P, YU B. Developing a New Form of Permeability and Kozeny-Carman Constant for Homogeneous Porous Media by Means of Fractal Geometry[J]. Advances in Water Resources, 2008, 31(1): 74-81.
[26]
吴星. 水泥浆液渗透注浆扩散机理试验研究[D]. 济南: 山东大学, 2015.
(WU Xing. Experimental Study on Diffusion Mechanism of Cement Slurry Infiltration Grouting[D]. Jinan: Shandong University, 2015. (in Chinese))
[27]
杨勇. 注浆浆液扩散规律及其对盾构隧道抬升作用研究[D]. 深圳: 深圳大学, 2019.
(YANG Yong. Study on the Diffusion Law of Grouting Slurry and Its Effect on the Uplift of Shield Tunnel[D]. Shenzhen: Shenzhen University, 2019. (in Chinese))
[28]
王庆磊, 朱永全, 李文江, 等. 考虑黏度空间衰减的宾汉姆流体柱形渗透注浆机制研究[J]. 岩石力学与工程学报, 2022, 41(8): 1647-1658.
(WANG Qing-lei, ZHU Yong-quan, LI Wen-jiang, et al. Study on the Mechanism of Column Permeation Grouting of Bingham Fluid Considering the Spatial Attenuation of Viscosity[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(8): 1647-1658. (in Chinese))
PDF(1092 KB)

Accesses

Citation

Detail

Sections
Recommended

/