Strength Degradation Mechanism and Predictive Model of Piping Soils under Seepage Failure

QIU Song-nan, LI Xiao-dong, ZHOU Peng-zhan

Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (1) : 186-193.

PDF(3148 KB)
PDF(3148 KB)
Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (1) : 186-193. DOI: 10.11988/ckyyb.20230931
Rock-Soil Engineering

Strength Degradation Mechanism and Predictive Model of Piping Soils under Seepage Failure

Author information +
History +

Abstract

Due to its concealed development process and severe consequences, seepage failure poses a significant threat to hydraulic engineering projects. To investigate the strength degradation characteristics of piping soils before and after seepage failure, an internal erosion stress path triaxial apparatus was developed for geotechnical testing. Seepage failure tests and triaxial degradation tests were conducted using this apparatus, considering the influences of three critical factors: fine particle content, consolidation pressure, and hydraulic gradient. Results revealed that: 1)These three factors significantly impact the seepage failure process, thereby affecting the strength degradation behavior of piping soils. Specifically, higher fine particle content and consolidation pressure tend to mitigate the degree of degradation, while a higher hydraulic gradient significantly amplifies it. 2)A hyperbolic curve function was used to model the degradation degree of piping soils, and a seepage failure strength degradation model was established through numerical simulation software. These findings provide valuable insights for the structural integrity analysis of hydraulic constructions and the prediction of seepage-related disasters.

Key words

seepage failure / piping soil / deterioration degree / cumulative sand inflow / numerical simulation

Cite this article

Download Citations
QIU Song-nan , LI Xiao-dong , ZHOU Peng-zhan. Strength Degradation Mechanism and Predictive Model of Piping Soils under Seepage Failure[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(1): 186-193 https://doi.org/10.11988/ckyyb.20230931

References

[1]
赵鑫, 马贵生, 万永良, 等. 堤防工程堤基渗流安全评价方法[J]. 长江科学院院报, 2019, 36(10):79-84.
Abstract
目前堤防工程安全评价方法是定性的,而堤防工程安全影响因素繁多,其影响因素既有定量又有非定量指标,且由于各指标存在不确定性和模糊性等特点,最终导致堤防的安全评价结果具有一定的不确定与随意性。为了建立定量化的堤防工程安全评价体系,以堤基工程渗流安全评价为例,分析了堤基渗透变形的主要表现形式,确定了堤基渗透破坏险情的安全主控因素,通过专家主观经验赋值法对各主控因素进行加权赋值,采用层次分析法建立了堤基渗流的安全评价模型,并利用具体的工程实例对所建立的模型进行验证。实例计算结果与工程实际相吻合,说明利用层次分析法建立定量化的堤防工程安全评价体系具有一定的准确性与可操作性。研究成果可推广至其他堤防工程中堤基渗流变形破坏的安全评估。
(ZHAO Xin, MA Gui-sheng, WAN Yong-liang, et al. A Safety Assessment Method for Seepage Flow in Dyke Foundation[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10): 79-84. (in Chinese))
At present, the safety assessment method of dyke engineering is qualitative, and there are many factors, both quantitative and non-quantitative, that affect the safety of dykes. Because of the uncertainty and fuzziness of the indicators, the final result of the safety assessment of dyke is uncertain and random. In order to establish a quantitative safety assessment system for dyke, we build a safety assessment model for seepage flow in dyke foundation using analytical hierarchy process (AHP) in which the main controlling indicators are given weight by subjective experiences of experts. The model is validated by using specific engineering examples. Consistency between calculation result and engineering practice demonstrates that the presented quantitative safety assessment model based on AHP is accurate and operable. It proves that the safety evaluation system of dyke engineering established by AHP is accurate and operable.
[2]
KE L, TAKAHASHI A. Experimental Investigations on Suffusion Characteristics and Its Mechanical Consequences on Saturated Cohesionless Soil[J]. Soils and Foundations, 2014, 54(4): 713-730.
[3]
MEHDIZADEH A, DISFANI M M, EVANS R, et al. Progressive Internal Erosion in a Gap-graded Internally Unstable Soil: Mechanical and Geometrical Effects[J]. International Journal of Geomechanics, 2018, 18(3): 04017160.1-04017160.14.
[4]
SATO M, KUWANO R. Laboratory Testing for Evaluation of the Influence of a Small Degree of Internal Erosion on Deformation and Stiffness[J]. Soils and Foundations, 2018, 58(3): 547-562.
[5]
MUIRWOOD D, MAEDA K, NUKUDANI E. Modelling Mechanical Consequences of Erosion[J]. Géotechnique, 2010, 60(6): 447-457.
[6]
吴梦喜, 叶发明, 张琦. 细颗粒流失对砂砾石土本构关系的影响研究[J]. 岩土力学, 2017, 38(6): 1550-1556.
(WU Meng-xi, YE Fa-ming, ZHANG Qi. Effect of Fine Grain Loss on the Stress-strain Relationship of Sand and Gravel Soils[J]. Rock and Soil Mechanics, 2017, 38(6): 1550-1556. (in Chinese))
[7]
ILLANGASEKARE T H, DAI D, BARRANCO F T, et al. Influence of Heterogeneity on NAPL Zone Detection with Subsurface Multiple Tracers: Column- and Intermediate-scale Laboratory Results[M]//Groundwater 2000. Boca Raton: CRC Press, 2020, 3: 99-100.
[8]
TERZAGHI K. Soil Mechanics: A New Chapter in Engineering Science[J]. Industrial and Civil Engineering, 1936, 12: 106-141.
[9]
INDRARATNA B, NGUYEN V T, RUJIKIATKAMJORN C. Assessing the Potential of Internal Erosion and Suffusion of Granular Soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(5):550-554.
[10]
INDRARATNA B, ISRAR J, RUJIKIATKAMJORN C. Geometrical Method for Evaluating the Internal Instability of Granular Filters Based on Constriction Size Distribution[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(10):04015045.
[11]
明华军, 陈西, 卢晓春, 等. 考虑饱和渗透系数的宽级配土渗流侵蚀过程室内试验研究[J]. 水利水电技术(中英文), 2023, 54(7): 183-192.
(MING Hua-jun, CHEN Xi, LU Xiao-chun, et al. Laboratory Experimental Study on Seepage Erosion in Wide-graded Soils Considering Saturated Permeability Coefficient[J]. Water Resources and Hydropower Engineering, 2023, 54(7):183-192. (in Chinese))
[12]
TOMLINSON S S, VAID Y P. Seepage Forces and Confining Pressure Effects on Piping Erosion[J]. Canadian Geotechnical Journal, 2000, 37(1): 1-13.
[13]
王兆南, 王刚, 金伟. 基于物质点-特征有限元耦合方法的向后侵蚀管涌模拟[J]. 岩土工程学报, 2024, 46(6): 1318-1324.
(WANG Zhao-nan, WANG Gang, JIN Wei. Simulation of Backward Erosion Piping Based on Coupled Material Point Characteristic Finite Element Method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1318-1324. (in Chinese))
[14]
BENDAHMANE F, MAROT D, ALEXIS A. Experimental Parametric Study of Suffusion and Backward Erosion[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(1): 57-67.
[15]
THEVANAYAGAM S, MOHAN S. Intergranular State Variables and Stress-Strain Behaviour of Silty Sands[J]. Géotechnique, 2000, 50(1): 1-23.
[16]
皮清珠. 细粒含量和围压影响下的尾粉砂力学特性试验研究及工程应用[D]. 重庆: 重庆大学, 2012.
PI Qing-zhu. Experimental Study on Mechanical Properties of Tailings Silt under the Influence of Fine Particle Content and Confining Pressure and Its Engineering Application[D]. Chongqing: Chongqing University, 2012. (in Chinese))
[17]
胡清波, 梁海安, 杨婷, 等. 围压和渗透压作用下塔木素深部黏土岩渗透及强度特性试验研究[J]. 长江科学院院报, 2021, 38(2): 107-113.
Abstract
深部岩体多处于复杂应力场和渗流场中,研究围压和渗透压作用下黏土岩特性对高放射性废物深地质处置库的设计开挖具有重要的意义。通过塔木素黏土岩围压加卸载渗透率演化试验及不同围压和渗透压下全应力-应变渗透率试验,分析了其渗透和强度特性。综合考虑围压和渗透压对黏土岩强度的影响,引入围压强化系数和渗透压弱化系数,并结合不同强度准则在表征黏土岩强度特性中的适用性对比,提出一种考虑围压和渗透压共同作用的黏土岩强度准则。研究结果表明:塔木素深部黏土岩渗透率均处于10-20 m2数量级,其渗透率与围压的关系在加载阶段满足指数函数关系,在卸载阶段满足幂函数关系;全应力-应变过程中,黏土岩围压强化系数大于渗透压弱化系数,共同作用时,围压对黏土岩强度的影响占主导。考虑围压和渗透压共同作用的强度准则能更好地反映塔木素黏土岩的强度特性,克服了Mohr-Coulomb和Hoek-Brown强度准则仅考虑围压变化的局限。
(HU Qing-bo, LIANG Hai-an, YANG Ting, et al. Permeability and Strength Characteristics of Tamusu Deep Clay under Confining Pressure and Osmotic Pressure[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(2): 107-113. (in Chinese))
Deep rock mass is mostly in complex stress field and seepage field. Studying the characteristics of clay rock under confining pressure and osmotic pressure is of great significance for the design and excavation of highly radioactive waste repository. In this paper, we examined the strength and permeability of Tamusu clay via permeability evolution test under loading-unloading confining pressure and full stress-strain permeability test under different confining pressures and osmotic pressures. Having compared the applicability of different strength criteria in characterizing the strength characteristics of clay, we proposed a strength criterion for clay rock in consideration of confining pressure and osmotic pressure by introducing a strengthening coefficient of confining pressure and a weakening coefficient of osmotic pressure. Results demonstrate that the permeability of Tamusu deep clay is in the order of 10-20 m2, and the relationship between permeability and confining pressure conforms to exponential function in loading stage while power function in unloading stage. In the whole stress-strain process, the strengthening coefficient of confining pressure is greater than the weakening coefficient of osmotic pressure. When working together, confining pressure has a dominant influence on the strength of Tamusu clay. The strength criterion considering the interaction of confining pressure and osmotic pressure could better reflect the strength characteristics of the Tamusu clay rock and overcome the limits of Mohr-Coulomb and Hoek-Brown strength criterion which only consider the confining pressure variation.
[18]
GB/T 50123—2019, 土工试验方法标准[S]. 北京: 中国计划出版社, 2020.
(GB/T 50123—2019, Standard for Geotechnical Testing Method[S]. Beijing: China Planning Press, 2020. (in Chinese))
[19]
KENNEY T C, LAU D. Internal Stability of Granular Filters[J]. Canadian Geotechnical Journal, 1985, 22(2): 215-225.
[20]
周健, 杨永香, 贾敏才, 等. 细粒含量对饱和砂土液化特性的影响[J]. 水利学报, 2009, 40(10): 1184-1188.
(ZHOU Jian, YANG Yong-xiang, JIA Min-cai, et al. Effect of Fines Content on Liquefaction Properties of Saturated Silty Sands[J]. Journal of Hydraulic Engineering, 2009, 40(10): 1184-1188. (in Chinese))
[21]
吴琪, 陈国兴, 朱雨萌, 等. 基于等效骨架孔隙比指标的饱和砂类土抗液化强度评价[J]. 岩土工程学报, 2018, 40(10): 1912-1922.
(WU Qi, CHEN Guo-xing, ZHU Yu-meng, et al. Evaluating Liquefaction Resistance of Saturated Sandy Soils Based on Equivalent Skeleton Void Ratio[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1912-1922. (in Chinese))
[22]
张晨阳, 谌民, 胡明鉴, 等. 细颗粒组分含量对钙质砂抗剪强度的影响[J]. 岩土力学, 2019, 40(增刊1): 195-202.
(ZHANG Chen-yang, CHEN Min, HU Ming-jian, et al. Effect of Fine Particles Content on Shear Strength of Calcareous Sand[J]. Rock and Soil Mechanics, 2019, 40(Supp.1): 195-202. (in Chinese))
[23]
ZHU Y, NIE Z, GONG J, et al. An Analysis of the Effects of the Size Ratio and Fines Content on the Shear Behaviors of Binary Mixtures Using DEM[J]. Computers and Geotechnics, 2020, 118: 103353.
[24]
VALDES J R, SANTAMARINA J C. Particle Clogging in Radial Flow: Microscale Mechanisms[J]. SPE Journal, 2006, 11(2): 193-198.
[25]
HUSTON D L, FOX J F. Clogging of Fine Sediment within Gravel Substrates: Dimensional Analysis and Macroanalysis of Experiments in Hydraulic Flumes[J]. Journal of Hydraulic Engineering, 2015, Doi: 10.1061/(ASCE)HY.1943-7900.0001015.
[26]
姚秋玲, 刘昌军, 丁留谦, 等. 堤基管涌微观机理模型试验研究[J]. 中国水利水电科学研究院学报, 2014, 12(1): 1-7.
(YAO Qiu-ling, LIU Chang-jun, DING Liu-qian, et al. Experimental Study on the Microcosmic Mechanism of Backward Piping in Dike Foundations[J]. Journal of China Institute of Water Resources and Hydropower Research, 2014, 12(1): 1-7. (in Chinese))
[27]
CHANG D S, ZHANG L M. Critical Hydraulic Gradients of Internal Erosion under Complex Stress States[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(9): 1454-1467.
[28]
CHEN C, ZHANG L M, CHANG D S. Stress-strain Behavior of Granular Soils Subjected to Internal Erosion[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, Doi: 10.1061/(ASCE)GT.1943-5606.000156.
PDF(3148 KB)

Accesses

Citation

Detail

Sections
Recommended

/