PDF(2475 KB)
Numerical Study on the Effects of Wave-Current Interaction for Typhoon-induced Storm Surges: A Case Study of Typhoon “Chan-hom”
CHU Dong-dong, LI Meng-yu, ZHU Yong-hui, YUAN Yuan, HE Zi-can, CHE Zhu-mei, ZHANG Ji-cai
Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (1) : 106-114.
PDF(2475 KB)
PDF(2475 KB)
Numerical Study on the Effects of Wave-Current Interaction for Typhoon-induced Storm Surges: A Case Study of Typhoon “Chan-hom”
Based on the FVCOM hydrodynamic model and the FVCOM-SWAVE wave model, we developed a wave-current coupled storm surge model for the Bohai sea, Yellow sea, and East China Sea during Typhoon “Chan-hom”. Following rigorous validation of surge elevations and significant wave heights, we quantified the impact of wave-current interaction on storm surge and identified key dynamic factors. Findings indicate that wave-current interaction significantly influences surge elevations in near-shore shallow waters, contributing approximately 14% to peak surge water levels. During high tide periods, wave-current interaction tends to reduce surge elevations, but increases surge levels during low tide periods. Accounting for wave-current interaction, the simulated significant wave heights show better agreement with observations. Additionally, the study compares the contributions of tide-surge interaction, wind field, and pressure to surge elevation. The wind field primarily drives surge elevations, with its effects most pronounced in the coastal waters of Zhejiang Province and Hangzhou Bay, where maximum surge elevations reach up to 2 m. In open sea areas, air pressure dominates surge elevations within the typhoon center’s radius. However, in coastal waters, particularly at the head of Hangzhou Bay, nonlinear tide-surge interaction and wave-current interaction significantly impact surge elevations, with respective maxima of 1.2 m and 0.5 m. These findings offer critical insights for enhancing coastal disaster prevention and mitigation strategies.
storm surge / wave-current interaction / coupled model / typhoon
| [1] |
尤晓昳, 武国相, 梁丙臣, 等. 基于长期观测资料的黄海天文潮-风暴潮非线性相互作用研究[J]. 中国海洋大学学报(自然科学版), 2022, 52(8): 77-88.
(
|
| [2] |
纪超, 张庆河, 马殿光, 等. 基于新型三维辐射应力的近岸波流耦合模型[J]. 浙江大学学报(工学版), 2022, 56(1):128-136.
(
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
端义宏, 朱建荣, 秦曾灏, 等. 一个高分辨率的长江口台风风暴潮数值预报模式及其应用[J]. 海洋学报, 2005, 27(3): 11-19.
(
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
谢丽, 张振克. 近20年中国沿海风暴潮强度、时空分布与灾害损失[J]. 海洋通报, 2010, 29(6): 690-696.
(
|
| [19] |
张西琳, 楚栋栋, 张继才, 等. 东南沿海台风风暴潮增水过程中非线性机制和地形的作用研究: 以1509号台风“灿鸿” 为例[J]. 海洋与湖沼, 2020, 51(6): 1320-1331.
(
|
| [20] |
楚栋栋. 中国东南沿海台风风暴潮多情境耦合数值模拟及关键因素敏感性分析[D]. 杭州: 浙江大学, 2021.
(
|
| [21] |
|
| [22] |
|
| [23] |
唐燕玲. 基于波流耦合模型的洋山海域风暴潮水动力特性研究[D]. 杭州: 浙江大学, 2018.
(
|
/
| 〈 |
|
〉 |